Refine Your Search

Topic

Search Results

Journal Article

Improvement in Gear Shift Comfort by Reduction in Double Bump Force of Passenger Vehicles

2017-10-08
Abstract In today’s competitive automobile market, driver comfort is at utmost importance and the bar is being raised continuously. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gear can result into customer dissatisfaction and will impact the brand image. While there are continual efforts being taken by most of the car manufactures, “Double Bump” in gearshift has remained as a pain area and impact severely on the shift feel. This is more prominent in North-South (N-S) transmissions. In this paper ‘Double Bump’ is a focus area and a mathematical / analytical approach is demonstrated by analyzing ‘impacting parameters’ and establishing their co-relation with double bump. Additionally, the results are also verified with a simulation model.
Journal Article

Driveline Ratio Selection and Shift Map Optimization for Automatic Transmission Vehicle at Concept Phase through Simulations

2017-10-08
Abstract Traditionally driveline ratios are selected based on trial and error method of proto vehicle testing. This consumes lot of time and increases overall vehicle development effort. Over last few decades, simulation-based design approach has been extensively used to alleviate this problem. This paper describes torque converter and final drive ratio (FDR) selection at concept phase for new Automatic Transmission (AT) vehicle development. Most of the critical data required for simulating vehicle performance and fuel economy (FE) targets were not available (e.g. shift map, clutch slip map, pedal map, dynamic torque, coast down, etc.) at an initial stage of the project. Hence, the risk for assuming right inputs and properly selecting FDR/Torque converter was particularly high. Therefore, a validated AVL Cruise simulation model based on an existing AT vehicle was used as a base for new AT vehicle development to mitigate the risk due to non-availability of inputs.
Journal Article

Statistical Modeling of Plate Clearance Distribution for Wet Clutch Drag Analysis

2017-10-08
Abstract Wet clutch packs are the key component for gear shifting in the step-ratio automatic transmission system. The clutch plates are coupled or de-coupled to alter gear ratios based on the driver’s actions and vehicle operating conditions. The frictional interfaces between clutch plates are lubricated with automatic transmission fluid (ATF) for both thermal and friction management. In a 10-speed transmission, there may be as many as 6 clutch packs. Under typical driving conditions, 2 to 3 clutch packs are open, shearing ATF and contributing to energy loss. There is an opportunity to improve fuel economy by reducing the associated viscous drag. An important factor that directly affects clutch drag is the clearance between rotating plates. The axial position of clutch plates changes continuously during operation. It is known in practice that not only the total clearance, but also its distribution between the plates affects the viscous drag.
Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Systematic CFD Parameter Approach to Improve Torque Converter Simulation

2019-04-08
Abstract A systematic parametrization approach was employed to simulate a torque converter operating over a wide range of speed ratios. Results of the simulation yielded torque converter impeller and turbine torques prediction errors below 11% when compared to manufacturer data. Further improvements in the computational fluids dynamic (CFD) model reduced such errors down to 3% for the impeller and 6% for the turbine torque predictions. Convergence was reached well under 300 iterations for the most optimal variable setting, but each speed ratio was let to run for 300 iterations. Solution time for the 300 iterations was 40 minutes per speed ratio. The systematic parametrization provides a very competitive procedure for torque converter simulation with reduced computational error and fast solution time.
Journal Article

Parasitic Battery Drain Problems and AUTOSAR Acceptance Testing

2018-04-18
Abstract Battery Drain problems can occur in the vehicle due to improper network management between electronic control units (ECUs). Aim of this paper is to identify the factors that cause transmission and cease of transmission of a network management message of an ECU along with its application messages that controls the sleep/wake-up performance of other ECUs in the network. Strategy used here is, based on the root cause analysis of problems found in Display unit in vehicle environment, the functional CAN signals impacting sleep/wake-up behavior is re-mapped along with the state flow transition of AUTOSAR NM Algorithm. A re-defined test case design and simulation for vehicle model is created. Especially it focuses on validating the impact of functional CAN signals on DUT’s sleep/wake-up performance.
Journal Article

An Adaptive Neuro-Fuzzy Inference System (ANFIS) Based Model for the Temperature Prediction of Lithium-Ion Power Batteries

2018-08-14
Abstract Li-ion batteries have been widely applied in the areas of personal electronic devices, stationary energy storage system and electric vehicles due to their high energy/power density, low self-discharge rate and long cycle life etc. For the better designs of both the battery cells and their thermal management systems, various numerical approaches have been proposed to investigate the thermal performance of power batteries. Without the requirement of detailed physical and thermal parameters of batteries, this article proposed a data-driven model using the adaptive neuro-fuzzy inference system (ANFIS) to predict the battery temperature with the inputs of ambient temperature, current and state of charge. Thermal response of a Li-ion battery module was experimentally evaluated under various conditions (i.e. ambient temperature of 0, 5, 10, 15 and 20 °C, and current rate of C/2, 1C and 2C) to acquire the necessary data sets for model development and validation.
Journal Article

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

2018-04-18
Abstract Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this paper quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate.
Journal Article

Contribution of the Mechanical Linkage in Gear Shift Feel of North-South Transmission

2017-10-08
Abstract Today’s automotive industry is facing cutthroat competition, especially in passenger vehicle business. Manufacturers around the globe are developing innovative and new products keeping focus on end customer; thus customer's opinion and perception about the product has become a factor of prime importance. Customer touch points such as gear shift lever, clutch, brakes, steering etc. are thus gaining more and more importance. Car companies are trying to induce more and more luxuries in these touch points so that they impress customer and create a positive opinion about the product. On the other hand manufacturers are also trying to manage profits. Companies thus need to find the best fit solution for improvising customer touch points with optimized costs. The performance of these touch points is driven by subsystems of mechanical components like mechanical linkage.
Journal Article

Exploring the Potential of Combustion on Titan

2018-04-07
Abstract Significant attention has been focused on Mars due to its relative proximity and possibility of sustaining human life. However, its lack of in-situ sources of energy presents a challenge to generate needed energy on the surface. Comparatively, Titan has a nearly endless source of fuel in its atmosphere and lakes, but both are lacking in regards to their oxidizing capacity. The finding of a possible underground liquid ammonia-water lake on Titan suggests that oxygen might actually be within reach. This effort provides the first theoretical study involving a primary energy generation system on Titan using the atmosphere as a fuel and underground water as the source for the oxygen via electrolysis from wind generated electricity.
Journal Article

Improve Heat Resistance of Composite Engine Cowlings Using Ceramic Coating Materials, Experimental Design and Testing

2018-06-04
Abstract A large amount of heat generated in the engineering compartment in a hovering helicopter may lead to premature degradation of inner skin of its engine cowling and cause serious failure on the engine cowling. This study proposes a solution of improving heat resistance of the helicopter engine cowlings by replacing the currently used intumescent coating with a ceramic coating material, Cerakote C-7700Q. Oven and flame tests were designed and conducted to evaluate the heat resistance of Cerakote C-7700Q. The test results show that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. Based on that, a new painting scheme with C-7700Q implemented was recommended.
Journal Article

Modeling of Ducted-Fan and Motor in an Electric Aircraft and a Preliminary Integrated Design

2018-10-04
Abstract Electric ducted-fans with high power density are widely used in hybrid aircraft, electric aircraft, and VTOL vehicles. For the state-of-the-art electric ducted-fan, motor cooling restricts the power density increase. A motor design model based on the fan hub-to-tip ratio proposed in this article reveals that the thermal coupling effect between fan aerodynamic design and motor cooling design has great potential to increase the power density of the motor in an electric propulsion system. A smaller hub-to-tip ratio is preferred as long as the power balance and cooling balance are satisfied. Parametric study on a current 6 kW electric ducted-fan system shows that the highest motor power density could be increased by 246% based on the current technology. Finally, a preliminary design was obtained and experiments were conducted to prove the feasibility of the model.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Design and Experiment on Aircraft Electromechanical Actuator Fan at Different Altitudes and Rotational Speeds

2019-06-07
Abstract For electromechanical actuators (EMAs) and electronic devices cooling on aircraft, there is a need to study cooling fan performance at various altitudes from sea level to 12,000 m where the ambient pressure varies from 1 to 0.2 atm. As fan static pressure head is proportional to air density, the fan’s rotational speed has to be increased significantly to compensate for the low ambient pressure of 0.2 atm at the altitude of 12,000 m. To evaluate fan performance for EMA cooling, a high-rotational-speed, commercially available fan made by Ametek with a diameter of ~82 mm and ~3 m3/min zero-load open cooling flow rate when operating at 20,000 rpm was chosen as the baseline. According to fan scaling laws, this fan was expected to meet the cooling needs for an EMA when operating at 0.2 atm. Using a closed flow loop, the performance of the fan operating in the above ambient pressure range and at a rotational speed between 15,000 and 30,000 rpm was evaluated.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

Sliding Mode Control of Hydraulic Excavator for Automated Grading Operation

2018-06-07
Abstract Although ground grading is one of the most common tasks that hydraulic excavators perform in typical work sites, proper grading is not easy for less-skilled operators as it requires coordinated manipulation of multiple hydraulic cylinders. In order to help alleviate this difficulty, automated grading systems are considered as an effective alternative to manual operations of hydraulic excavators. In this article, a sliding mode controller design is presented for automated grading control of a hydraulic excavator. First, an excavator manipulator model is developed in Simulink by using SimMechanics and SimHydraulics toolboxes. Then, a sliding mode controller is designed to control the manipulator to trace a predefined trajectory for a grading task. For a comparison study, a PI controller is used to control the manipulator to perform a grading task following the same desired trajectory and the performance is compared with those obtained by the sliding mode controller.
Journal Article

3D-CFD-Study of Aerodynamic Losses in Compressor Impellers

2018-07-05
Abstract Due to the increasing requirements for efficiency, the wide range of characteristics and the improved possibilities of modern development and production processes, compressors in turbochargers have become more individualized in order to adapt to the requirements of internal combustion engines. An understanding of the working mechanisms as well as an understanding of the way that losses occur in the flow allows a reduced development effort during the optimization process. This article presents three-dimensional (3D) Computational Fluid Dynamics (CFD) investigations of the loss mechanisms and quantitative calculations of individual losses. The 3D-CFD method used in this article will reduce the drawbacks of one-dimensional calculation as far as possible. For example, the twist of the blades is taken into account and the “discrete” method is used for loss calculation instead of the “average” method.
X