Refine Your Search

Topic

Search Results

Journal Article

Optimal Design of Carbon Fiber B-Pillar Structure Based on Equal Stiffness Replacement

2020-03-23
Abstract Based on the characteristics of high strength and modulus of carbon fiber-reinforced composite (CFRP), in this article, the CFRP material was used to replace the steel material of the automobile’s B-pillar inner and outer plates, and the three-stage optimization design of the lamination structure was carried out. Firstly, this article used the principle of equal stiffness replacement to determine the thickness of the carbon fiber B-pillar inner and outer plates, and the structural design of the replaced B-pillar was also carried out. Secondly, on the basis of the vehicle collision model, the B-pillar subsystem model was extracted, and the material replacement and collision simulation were carried out.
Journal Article

Experimental Investigation of the Near Wall Flow Downstream of a Passenger Car Wheel Arch

2018-03-01
Abstract The flow around and downstream of the front wheels of passenger cars is highly complex and characterized by flow structure interactions between the external flow, fluid exiting through the wheelhouse, flow from the engine bay and the underbody. In the present paper the near wall flow downstream of the front wheel house is analyzed, combining two traditional methods. A tuft visualization method is used to obtain the limiting streamline pattern and information about the near wall flow direction. Additionally, time resolved surface pressure measurements are used to study the pressure distribution and the standard deviation. The propagation of the occurring flow structures is investigated by cross correlations of the pressure signal and a spectral analysis provides the characteristic frequencies of the investigated flow.
Journal Article

Development of Safe and Sustainable EPAS (Electric Power Assist Steering) System for Emerging Markets

2018-04-07
Abstract The vehicle attributes developed for emerging markets like India are unique because of different topographical conditions, diversity and culture within the different states. Major attributes in vehicle development process is development of safe and sustainable vehicle systems (steering, brakes etc.) for the driver. India is presently an emerging market for automotive sector. With booming economy, purchasing power of the consumer has gone up in the past few years. Most of young population of India have started buying the cars. At the same time, India’s road infrastructure, vehicle regulations have exalted over the years. The consumer cognizance towards the vehicles have started changing now. They want safer, robust system in their vehicles with new convenience features at affordable cost. In recent years, almost all OEM’s in India have migrated steering systems from HPAS to EPAS for payback on fuel economy and weight.
Journal Article

Design, Analysis, Simulation and Validation of Automobile Suspension System Using Drive-Shaft as a Suspension Link

2018-04-18
Abstract With increasing demands for higher performance along with lower vehicle emissions, lightweight vehicle system construction is key to meet such demands. Suspension and transmission assemblies being the key areas for weight-reduction, we have designed a revolutionary new type of suspension system which combines the suspension links with the powertrain assembly and thus completely eliminates one suspension member. Less weight means lower fuel-consumption with improved passenger-comfort and road-holding due to reduction in unsprung mass. Elimination of a suspension link reduces the overall cost of material, machining & fabrication making our design cost-effective than existing setups. This paper deals with the design and implementation of of our concept. A working prototype is also constructed and tested which completely validates our design.
Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

Introducing the Modified Tire Power Loss and Resistant Force Regarding Longitudinal Slip

2018-04-18
Abstract Investigation of vehicle resistant forces and power losses is of crucial importance owing to current state of energy consumption in transport sector. Meanwhile, considerable portion of resistant forces in a ground vehicle is traced back to tires. Pneumatic tires are known to be a source of energy dissipation as a consequence of their viscoelastic nature. The current study aims to provide a modification to tire resistance by considering the power loss in a tire due to longitudinal slip. The modified tire resistance is comprised of rolling resistance and a newly introduced resistance caused by tire slip, called slip resistance. The physical model is chosen for parameters sensitivity study since the tractive force is described in this model via tangible physical parameters, e.g. tire tangential stiffness, coefficient of friction, and contact patch length.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Effect of Spoke Design and Material Nonlinearity on Non-Pneumatic Tire Stiffness and Durability Performance

2021-08-06
Abstract The non-pneumatic tire (NPT) has been widely used due to its advantages of no run-flat, no need for air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications in military vehicles, earthmovers, the lunar rover, stair-climbing vehicles, etc. Recently, the Unique Puncture-Proof Tire System (UPTIS) NPT has been introduced for passenger vehicles. In this study, three different design configurations, viz., Tweel, Honeycomb, and newly developed UPTIS, have been compared. The effect of polyurethane (PU) material nonlinearity has also been introduced by applying five different nonlinear PU material properties in the spokes. The combined analysis of the PU material nonlinearity and spoke design configuration on the overall tire stiffness and spoke damage prediction is done using three-dimensional (3D) finite element modelling (FEM) simulations performed in ANSYS 16.0.
Journal Article

Characteristics Analyses of Innovative Crank-Lever Electromagnetic Damper for Suspension System of an Off-Road Vehicle

2021-06-02
Abstract In this article performance of the innovative Crank-Lever Electromagnetic Damper (CLEMD) for an off-road vehicle suspension system is analyzed. To determine the characteristic behavior of the CLEMD, the damping force it provides on the suspension system is varied by changing the values of the damping coefficient in the simulations. Various parameters considered in the analyses include power regenerated, voltage, current, comfort, road-holding, etc. The behavior of all the parameters of the CLEMD is observed for an off-road vehicle by carrying out simulations on country roads since the off-road vehicles are subjected to higher road irregularities and hence provide an opportunity to regenerate a higher amount of power. A two-dimensional (2-D) model of a vehicle developed in SimMechanics is interfaced with a Simulink model of CLEMDs for the analyses.
Journal Article

Impact of Rear Spoiler on Vehicle Braking Longitudinal Dynamics

2021-04-30
Abstract During vehicle braking, friction forces generated on the vehicle tires and the vehicle resisting aerodynamic forces play a critical role that impact the vehicle’s longitudinal braking dynamics such as stopping distance and time. These forces are mainly the tires’ braking and rolling resisting forces, vehicle lift, and drag forces. The vehicle aerodynamic forces cannot be neglected due to their impact on the vehicle’s longitudinal dynamics, especially at high vehicle speeds. This article investigates the impact of the vehicle’s rear spoiler on both vehicle aerodynamic forces and longitudinal dynamic, such as stopping distance and time. A computational fluid dynamics (CFD) model using ANSYS-Fluent® is employed to precisely estimate the vehicle’s aerodynamic forces in the case of a vehicle without and with a rear spoiler.
Journal Article

Simulation of the Steering System Power Demand during the Concept Phase Focusing on Tire Modelling at Standstill

2021-11-09
Abstract Estimating the power demand of a steering system is one of the main tasks during steering system development in the concept phase of a vehicle development process. Most critical for typical axle kinematics are parking maneuvers with simultaneously high rack forces and velocities. Therefore, the focus of the article is a tire model for standstill, which can be parametrized without measurements, only having tire dimensions and conditions (inflation pressure and wheel load) as input. Combined with a double-track model, a vehicle model is developed, which is able to predict the rack force and is fully applicable during the concept phase. The article demonstrates quantitatively that the tie rod forces, and thereby especially the tire bore torque, cause the largest fraction of the power demand at the rack. For this reason, the prediction of the bore torque is investigated in detail, whereby basic approaches from the literature are analyzed and enhanced.
Journal Article

Multi-Chamber Tire Concept for Low Rolling-Resistance

2019-04-08
Abstract Rolling-resistance is leading the direction of numerous tire developments due to its significant effect on fuel consumption and CO2 emissions considering the vehicles in use globally. Many attempts were made to reduce rolling-resistance in vehicles, but with no or limited success due to tire complexity and trade-offs. This article investigates the concept of multiple chambers inside the tire as a potential alternative solution for reducing rolling-resistance. To accomplish that, novel multi-chamber designs were introduced and numerically simulated through finite-element (FE) modeling. The FE models were compared against a standard design as the baseline. The influences on rolling-resistance, grip, cornering, and mechanical comfort were studied. The multi-chambers tire model reduced rolling-resistance considerably with acceptable trade-offs. Independent air volumes isolating tread from sidewalls would maintain tire’s profile effectively.
Journal Article

Study of a Mono-Tube Hydraulic Energy Harvesting Shock Absorber

2019-09-23
Abstract In this chapter, a mono-tube hydraulic energy harvesting shock absorber is proposed. The absorber is featured with the autogeneration where it permits harvesting waste energy with a proper asymmetric ratio of compression/extension damping force can be obtained. Using the continuity equation and including the compressibility of the oil, equations that describe the variation of the oil pressure in model chambers are derived. Then, relations that relate chambers’ pressure with the damping force, the harvested power, and the system efficiency are derived. Results illustrate the effects of frequency, amplitude, external resistance, and chambers’ size on the damping force and the harvested power. The proposed model can harvest an average power of 500 W with maximum peak of 1800 W using an external resistance of 10 Ω at an input amplitude of 50 mm and frequency of 1.67 Hz.
Journal Article

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

2019-10-14
Abstract The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method.
Journal Article

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

2019-10-15
Abstract Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics.
Journal Article

Influence of Intelligent Active Suspension System Controller Design Techniques on Vehicle Braking Characteristics

2018-12-04
Abstract This article presents a comprehensive investigation for the interaction between vehicle ride vibration control and braking control using two degrees of freedom (2DOF) quarter vehicle model. A typical limited bandwidth active suspension system with nonlinear spring and damping characteristics of practical hydraulic and pneumatic components is controlled to regulate both suspension and tire forces and therefore provide the optimum ride comfort and braking performance of an anti-lock brake system (ABS). In order to design a suitable controller for this nonlinear integrated system, various control techniques are followed including state feedback tuned using Linear Quadratic Regulator (LQR), state feedback tuned using Genetic Algorithm (GA), Proportional Integrated (PI) tuned genetically, and Fuzzy Logic Control (FLC). The ABS control system is designed to limit skid ratio below threshold of 15%.
Journal Article

Tire Side Force Characteristics with the Coupling Effect of Vertical Load and Inflation Pressure

2018-11-09
Abstract The tire vertical load and inflation pressure have great influence on tire steady- and non-steady-state characteristics and, consequently, on the vehicle handling and stability. The objective of this article is to reveal the coupling effect of tire vertical load and inflation pressure on tire characteristics and then introduce an improved UniTire side force model including such coupling effect through experimental and theoretical analysis. First, the influence of the tire vertical load and inflation pressure on the tire characteristics is presented through experimental analysis. Second, the theoretical tire cornering stiffness and lateral relaxation length model are introduced to study the underlying mechanism of the coupling effect. Then, an improved UniTire side force model including the coupling effect of tire vertical load and inflation pressure is derived. Finally, the proposed improved UniTire side force model is validated through tire steady-state and transient data.
Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

An Optical-Based Technique to Obtain Vibration Characteristics of Rotating Tires

2019-08-21
Abstract The dynamic characteristics of tires are critical in the overall vibrations of vehicles because the tire-road interface is the only medium of energy transfer between the vehicle and the road surface. Obtaining the natural frequencies and mode shapes of the tire helps in improving the comfort of the passengers. The vibrational characteristics of structures are usually obtained by performing conventional impact hammer modal testing, in which the structure is excited with an impact hammer and the response of the structure under excitation is captured using accelerometers. However, this approach only provides the response of the structure at a few discrete locations, and it is challenging to use this procedure for rotating structures. Digital Image Correlation (DIC) helps in overcoming these challenges by providing the full-field response of the structure.
X