Refine Your Search

Topic

Search Results

Journal Article

Parasitic Battery Drain Problems and AUTOSAR Acceptance Testing

2018-04-18
Abstract Battery Drain problems can occur in the vehicle due to improper network management between electronic control units (ECUs). Aim of this paper is to identify the factors that cause transmission and cease of transmission of a network management message of an ECU along with its application messages that controls the sleep/wake-up performance of other ECUs in the network. Strategy used here is, based on the root cause analysis of problems found in Display unit in vehicle environment, the functional CAN signals impacting sleep/wake-up behavior is re-mapped along with the state flow transition of AUTOSAR NM Algorithm. A re-defined test case design and simulation for vehicle model is created. Especially it focuses on validating the impact of functional CAN signals on DUT’s sleep/wake-up performance.
Journal Article

An Adaptive Neuro-Fuzzy Inference System (ANFIS) Based Model for the Temperature Prediction of Lithium-Ion Power Batteries

2018-08-14
Abstract Li-ion batteries have been widely applied in the areas of personal electronic devices, stationary energy storage system and electric vehicles due to their high energy/power density, low self-discharge rate and long cycle life etc. For the better designs of both the battery cells and their thermal management systems, various numerical approaches have been proposed to investigate the thermal performance of power batteries. Without the requirement of detailed physical and thermal parameters of batteries, this article proposed a data-driven model using the adaptive neuro-fuzzy inference system (ANFIS) to predict the battery temperature with the inputs of ambient temperature, current and state of charge. Thermal response of a Li-ion battery module was experimentally evaluated under various conditions (i.e. ambient temperature of 0, 5, 10, 15 and 20 °C, and current rate of C/2, 1C and 2C) to acquire the necessary data sets for model development and validation.
Journal Article

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

2018-04-18
Abstract Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this paper quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate.
Journal Article

Enhanced Low-Order Model with Radiation for Total Temperature Probe Analysis and Design

2018-05-16
Abstract Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. For these studies, there is still a place for low-order approximate methods, and that is the subject of this paper. Here, an enhanced, low-order model is presented that includes conduction with variable thermal conductivity, convection with varying convection coefficient, varying diameter (and thus area) along the length of the sensor and radiation, all implemented in a convenient MATLAB code.
Journal Article

Exploring the Potential of Combustion on Titan

2018-04-07
Abstract Significant attention has been focused on Mars due to its relative proximity and possibility of sustaining human life. However, its lack of in-situ sources of energy presents a challenge to generate needed energy on the surface. Comparatively, Titan has a nearly endless source of fuel in its atmosphere and lakes, but both are lacking in regards to their oxidizing capacity. The finding of a possible underground liquid ammonia-water lake on Titan suggests that oxygen might actually be within reach. This effort provides the first theoretical study involving a primary energy generation system on Titan using the atmosphere as a fuel and underground water as the source for the oxygen via electrolysis from wind generated electricity.
Journal Article

Improve Heat Resistance of Composite Engine Cowlings Using Ceramic Coating Materials, Experimental Design and Testing

2018-06-04
Abstract A large amount of heat generated in the engineering compartment in a hovering helicopter may lead to premature degradation of inner skin of its engine cowling and cause serious failure on the engine cowling. This study proposes a solution of improving heat resistance of the helicopter engine cowlings by replacing the currently used intumescent coating with a ceramic coating material, Cerakote C-7700Q. Oven and flame tests were designed and conducted to evaluate the heat resistance of Cerakote C-7700Q. The test results show that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. Based on that, a new painting scheme with C-7700Q implemented was recommended.
Journal Article

Dynamic Particle Generation/Shedding in Lubricating Greases Used in Aerospace Applications

2018-08-03
Abstract The purpose of this study is to examine the phenomenon of Dynamic Particle Generation in lubricating greases that are used in a variety of critical Aerospace mechanisms. Particle Generation occurs in bearings, ball screws, and other mechanical devices where dynamic conditions are present. This should not be confused with outgassing as particle generation is unrelated to the pressure effects on a system. This is a critical factor in many systems as particle generation can contaminate systems or processes causing them to fail. These failures can lead to excessive costs, production failure, and equipment damage. In this study, several greases made from Multiplyalkylated Cyclopentane and Perfluoropolyether base fluids were tested to evaluate their particle generation properties. This particle generation phenomenon was studied using a custom test rig utilizing a high precision cleanroom ball-screw to simulate true application conditions.
Journal Article

Investigation of Fatigue Life of Wheels in Commercial Vehicles

2018-08-21
Abstract In India, vehicle population increases every day along with road accidents by 2.5% every year. About 7.7% of accidents are caused by wheel separation, 60% of which are due to nut-related problems. Wheel separations in vehicles occur due to fastener issues and fatigue failures in bolts. A study of the reasons for and mechanisms of nut loosening showed that left-hand side wheels detached and fracture failure occurred in right-hand side studs. Fatigue life of wheels with Nord-Lock washer and without washer is determined by using numerical analysis as per the IS 9438 cornering fatigue test. These numerical results are compared with experimental results.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Fatigue Evaluation of Multi-Degree of Freedom, Frequency Domain, Stochastic, Truck Road Load Models

2019-02-11
Abstract A number of semi-deterministic and stochastic formulations of multi-degree of freedom, frequency domain load models for heavy truck chassis are proposed and evaluated. The semi-deterministic models aim at reproducing the damage of a specific vehicle, while the stochastic ones aim to describe a collection of vehicle loads. The stochastic models are divided into two groups: Monte Carlo based and models based on single spectrum matrices. In both cases, the objective is to provide a load model that may be used to produce a design with a certain probability of survival. The goodness of the models is evaluated through a comparison of their damage outcomes with the corresponding damages of a set of time domain loads. This original time domain load set consists of chassis accelerations collected from seven physical trucks.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Electrifying Long-Haul Freight—Part II: Assessment of the Battery Capacity

2019-01-25
Abstract Recently, electric heavy-duty tractor-trailers (EHDTTs) have assumed significance as they present an immediate solution to decarbonize the transportation sector. Hence, to illustrate the economic viability of electrifying the freight industry, a detailed numerical model to estimate the battery capacity for an EHDTT is proposed for a route between Washington, DC, to Knoxville, TN. This model incorporates the effects of the terrain, climate, vehicular forces, auxiliary loads, and payload in order to select the appropriate motor and optimize the battery capacity. Additionally, current and near-future battery chemistries are simulated in the model. Along with equations describing vehicular forces based on Newton’s second law of motion, the model utilizes the Hausmann and Depcik correlation to estimate the losses caused by the capacity offset of the batteries. Here, a Newton-Raphson iterative scheme determines the minimum battery capacity for the required state of charge.
Journal Article

Electrifying Long-Haul Freight—Part I: Review of Drag, Rolling Resistance, and Weight Reduction Potential

2019-09-05
Abstract Electric heavy-duty tractor-trailers (EHDTT) offer an important option to reduce greenhouse gases (GHG) for the transportation sector. However, to increase the range of the EHDTT, this effort investigates critical vehicle design features that demonstrate a gain in overall freight efficiency of the vehicle. Specifically, factors affecting aerodynamics, rolling resistance, and gross vehicle weight are essential to arrive at practical input parameters for a comprehensive numerical model of the EHDTT, developed by the authors in a subsequent paper. For example, drag reduction devices like skirts, deturbulators, vortex generators, covers, and other commercially available apparatuses result in an aggregated coefficient of drag of 0.367. Furthermore, a mixed utilization of single-wide tires and dual tires allows for an optimized trade-off between low rolling resistance tires, traction, and durability.
Journal Article

Partial Transparency of Advanced Compression Ignition Combustion Chamber Deposits, Its Impact on Combustion Chamber Wall Temperatures and Application to Thermal Barrier Coating Design

2018-04-18
Abstract The proven impact of combustion chamber deposits, CCD, on advanced compression ignition, ACI, combustion strategies has spurred researchers to develop thermal barrier coatings, TBC, which can mimic CCD benefits on combustion efficiency and operational range expansion. However, application of TBCs within multi-mode engines exposes them to non-negligible soot radiation. In the present paper, the impact of radiation heat transfer on combustion chamber deposits is studied. The morphological construction of the combustion chamber deposit layer is shown to be partially transparent to radiation heat transfer, drawing corollaries with ceramic-based TBCs. Additional experimentation eliminates the optical transparency of CCD to reveal an “effective radiation penetration depth” facilitated by open surface porosity. The effective radiation penetration depth is then utilized to establish the relative communicating porosity of CCD and a magnesium zirconate TBC.
Journal Article

Gear Shift Quality Parameters Optimization for Critical to Quality Dimensions

2018-06-20
Abstract Gear Shift Quality (GSQ) in passenger cars is one of the sensitive touch points, which has a direct effect on driver fatigue and drivability. In the following article, an attempt has been made to study the variance in Critical to Quality (CTQ) dimensions and their influence on GSQ parameters. CTQ matrix that shows relation between CTQ parameters and GSQ parameters is formed and is analyzed to study process capability. Impact of variance in CTQs on GSQ parameters is studied and finally has resulted intoaTolerance revisionbRemoval of C of C symbol from drawing wherever is required In an automobile transmission, the driver’s comfort of smooth shifting and selection of gears is a major concern for the transmission designer. Apart from smoother shifting and selection of gears while driving, the overall gearshift quality is also important for the transmission designer, which has a direct impact on customer delight.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

Fracture-Splitting Processing Performance Study and Comparison of the C70S6 and 36MnVS4 Connecting Rods

2018-08-08
Abstract 36MnVS4 is a new connecting-rod fracture-splitting material. To explore why it has a high fracture- splitting defective index, this article simulated the fracture-splitting process of connecting rods. Comparing 36MnVS4 with C70S6, this article analyzed the stress-strain state of the groove roots, the position of crack initiation, the plastic deformation distribution of the fracture surface, and the splitting force changes in fracture splitting process. Results show that the crack initiation position of the 36MnVS4 connecting rod is relatively more scattered and random, and the crack starting point of the C70S6 connecting rod is more unique. Compared with the C70S6 connecting rod, the 36MnVS4 connecting rod has an earlier crack initiation time and smaller fracture-splitting force. Therefore, the 36MnVS4 has higher gap sensitivity and its fracture surface is more prone to tear.
Journal Article

Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines

2019-01-23
Abstract Insulating combustion chamber surfaces with thermal barrier coatings (TBCs) provides thermal efficiency improvement when done appropriately. This article reports on insulation heat transfer, engine performance characteristics, and damage modelling of “temperature swing” TBCs. “Temperature swing” insulation refers to the insulation material applied on surfaces of combustion chamber walls that enables selective manipulation of its surface temperature profile over the four strokes of an engine cycle. A combined GT Suite-ANSYS Fluent simulation methodology is developed to investigate the impact of thermal properties and insulation thickness for a variety of TBC materials for its “temperature swing” characteristics. This one-dimensional transient heat conduction analyses and engine cycle simulations are performed using scaled-down thermal properties of yttria-stabilized zirconia.
Journal Article

Finite Element Thermo-Structural Methodology for Investigating Diesel Engine Pistons with Thermal Barrier Coating

2018-12-14
Abstract Traditionally, in combustion engine applications, metallic materials have been widely employed due to their properties: castability and machinability with accurate dimensional tolerances, good mechanical strength even at high temperatures, wear resistance, and affordable price. However, the high thermal conductivity of metallic materials is responsible for consistent losses of thermal energy and has a strong influence on pollutant emission. A possible approach for reducing the thermal exchange requires the use of thermal barrier coating (TBC) made by materials with low thermal conductivity and good thermo-mechanical strength. In this work, the effects of a ceramic coating for thermal insulation of the piston crown of a car diesel engine are investigated through a numerical methodology based on finite element analysis. The study is developed by considering firstly a thermal analysis and then a thermo-structural analysis of the component.
X