Refine Your Search

Topic

Search Results

Journal Article

Optimal Design of Carbon Fiber B-Pillar Structure Based on Equal Stiffness Replacement

2020-03-23
Abstract Based on the characteristics of high strength and modulus of carbon fiber-reinforced composite (CFRP), in this article, the CFRP material was used to replace the steel material of the automobile’s B-pillar inner and outer plates, and the three-stage optimization design of the lamination structure was carried out. Firstly, this article used the principle of equal stiffness replacement to determine the thickness of the carbon fiber B-pillar inner and outer plates, and the structural design of the replaced B-pillar was also carried out. Secondly, on the basis of the vehicle collision model, the B-pillar subsystem model was extracted, and the material replacement and collision simulation were carried out.
Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Effect of Spoke Design and Material Nonlinearity on Non-Pneumatic Tire Stiffness and Durability Performance

2021-08-06
Abstract The non-pneumatic tire (NPT) has been widely used due to its advantages of no run-flat, no need for air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications in military vehicles, earthmovers, the lunar rover, stair-climbing vehicles, etc. Recently, the Unique Puncture-Proof Tire System (UPTIS) NPT has been introduced for passenger vehicles. In this study, three different design configurations, viz., Tweel, Honeycomb, and newly developed UPTIS, have been compared. The effect of polyurethane (PU) material nonlinearity has also been introduced by applying five different nonlinear PU material properties in the spokes. The combined analysis of the PU material nonlinearity and spoke design configuration on the overall tire stiffness and spoke damage prediction is done using three-dimensional (3D) finite element modelling (FEM) simulations performed in ANSYS 16.0.
Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Journal Article

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

2018-04-18
Abstract Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this paper quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate.
Journal Article

Parasitic Battery Drain Problems and AUTOSAR Acceptance Testing

2018-04-18
Abstract Battery Drain problems can occur in the vehicle due to improper network management between electronic control units (ECUs). Aim of this paper is to identify the factors that cause transmission and cease of transmission of a network management message of an ECU along with its application messages that controls the sleep/wake-up performance of other ECUs in the network. Strategy used here is, based on the root cause analysis of problems found in Display unit in vehicle environment, the functional CAN signals impacting sleep/wake-up behavior is re-mapped along with the state flow transition of AUTOSAR NM Algorithm. A re-defined test case design and simulation for vehicle model is created. Especially it focuses on validating the impact of functional CAN signals on DUT’s sleep/wake-up performance.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Evaluation of Thermal Roll Formed Thick Composite Panels Using Surface NDT Methods

2017-09-19
Abstract Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off-the-shelf Non-Destructive Test, NDT, equipment utilizing Fringe projection hardware and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with carbon composite panels. This process allows us to quickly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using AFP and formed using TRF.
Journal Article

Studies on Friction Mechanism of NAO Brake-Pads Containing Potassium Titanate Powder as a Theme Ingredient

2017-09-17
Abstract Potassium titanate (KT) fibers/whiskers are used as a functional filler for partial replacement of asbestos in NAO friction materials (FMs). Based on little information reported in open literature; its exact role is not well defined since some papers claim it as the booster for resistance to fade (FR), or wear (WR) and sometimes as damper for friction fluctuations. Interestingly, KT fibers and whiskers (but not powder) are proved as carcinogens by the International Agency for Research on Cancer (IARC). However, hardly any efforts are reported on exploration of influence of KT powder and its optimum amount in NAO FMs (realistic composites) in the literature. Hence a series of five realistic multi-ingredient compositions in the form of brake-pads with similar parent composition but varying in the content of KT powder from 0 to 15 wt% (in the steps of 3) were developed. These composites were characterized for physical, mechanical, chemical and tribological performance.
Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

2017-09-19
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
Journal Article

Disc Pad Physical Properties vs. Porosity: The Question of Compressibility as an Intrinsic Physical Property

2017-09-17
Abstract Disc pad physical properties are believed to be important in controlling brake friction, wear and squeal. Thus these properties are carefully measured during and after manufacturing for quality assurance. For a given formulation, disc pad porosity is reported to affect friction, wear and squeal. This investigation was undertaken to find out how porosity changes affect pad natural frequencies, dynamic modulus, hardness and compressibility for a low-copper formulation and a copper-free formulation, both without underlayer, without scorching and without noise shims. Pad natural frequencies, modulus and hardness all continuously decrease with increasing porosity. When pad compressibility is measured by compressing several times as recommended and practiced, the pad surface hardness is found to increase while pad natural frequencies and modulus remain essentially unchanged.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

2019-12-13
Abstract Joining titanium (Ti) alloys with conventional processes is difficult due to their complex structural properties and ability of phase transformation. Concerning all the difficulties, diffusion bonding is considered as an appropriate process for joining Ti alloys. Ti6Al4V, which is an α+β alloy widely used for aero engine component manufacturing, is diffusion bonded in this investigation. The diffusion bonding process parameters such as bonding temperature, bonding pressure, and holding time were optimized to achieve desired bonding characteristics such as shear strength, bonding strength, bonding ratio, and thickness ratio using response surface methodology (RSM). Empirical relationships were developed for the prediction of the bond characteristics, and sensitivity analysis was performed to determine the increment and decrement tendency of the shear strength with respect to the bonding parameters.
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

An Investigation on the Electrical Energy Capacity of Cylindrical Lithium-Ion and Lithium Iron Phosphate Battery Cells for Hybrid Aircraft

2020-10-19
Abstract Improving the energy performance of batteries can increase the reliability of electric aircraft. To achieve this goal, battery management systems (BMS) are required to keep the temperature within the battery pack and cells below the safety limits and make the temperature distribution as even as possible. Batteries have a limited service life as a result of unwanted chemical reactions, physical changes that cause the loss of active materials in the structure, and internal resistance increase during the charging and discharging cycle of the battery. These changes usually affect the electrical performance of batteries. Battery life can be increased only by reducing or preventing unwanted chemical reactions. Lithium-ion (Li-ion) batteries are a suitable option due to their high specific energy and energy density advantages. In this study, the necessity of heat management is emphasized. The discharge tests of the Li-ion battery provided 94.6 Wh under 10C and 90.9 Wh under 1C.
Journal Article

Mechanical Response of Hybrid Laminated Polymer Nanocomposite Structures: A Multilevel Numerical Analysis

2020-10-19
Abstract The prediction of mechanical elastic response of laminated hybrid polymer composites with basic carbon nanostructure, that is carbon nanotubes and graphene, inclusions has gained importance in many advanced industries like aerospace and automotive. For this purpose, in the current work, a hierarchical, four-stage, multilevel framework is established, starting from the nanoscale, up to the laminated hybrid composites. The proposed methodology starts with the evaluation of the mechanical properties of carbon nanostructure inclusions, at the nanoscale, using advanced 3D spring-based finite element models. The nanoinclusions are considered to be embedded randomly in the matrix material, and the Halpin-Tsai model is used in order to compute the average properties of the hybrid matrix at the lamina micromechanics level.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Neural Partial Differentiation-Based Estimation of Terminal Airspace Sector Capacity

2021-07-14
Abstract The main focus of this article is the online estimation of the terminal airspace sector capacity from the Air Traffic Controller 0ATC) dynamical neural model using Neural Partial Differentiation (NPD) with permissible safe separation and affordable workload. For this purpose, a primarily neural model of a multi-input-single-output (MISO) ATC dynamical system is established, and the NPD method is used to estimate the model parameters from the experimental data. These estimated parameters have a less relative standard deviation, and hence the model validation results show that the predicted neural model response is well matched with the intervention of the ATC workload. Moreover, the proposed neural network-based approach works well with the experimental data online as it does not require the initial values of model parameters, which are unknown in practice.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
X