Refine Your Search

Topic

Search Results

Journal Article

Innovative Approach of Wedge Washer to Avoid Bolt Loosening in Automotive Applications

2017-10-08
Abstract Automotive vehicle includes various systems like engine, transmission, exhaust, air intake, cooling and many more systems. No doubt the performance of individual system depends upon their core design. But for performance, the system needs to be fastened properly. In automotive, most of the joints used fasteners which helps in serviceability of the components. There are more than thousands of fasteners used in the vehicle. At various locations, we found issue of bolt loosening and because of this design intent performance has not met by the system. During product development of ECS (Engine cooling system), various issues reported to loosening the bolt. The pre-mature failure of bolt loosening, increases the interest in young engineers for understanding the behavior of fastener in vehicle running conditions. This paper focuses on the design of wedge shape of washer to avoid bolt loosening.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Parasitic Battery Drain Problems and AUTOSAR Acceptance Testing

2018-04-18
Abstract Battery Drain problems can occur in the vehicle due to improper network management between electronic control units (ECUs). Aim of this paper is to identify the factors that cause transmission and cease of transmission of a network management message of an ECU along with its application messages that controls the sleep/wake-up performance of other ECUs in the network. Strategy used here is, based on the root cause analysis of problems found in Display unit in vehicle environment, the functional CAN signals impacting sleep/wake-up behavior is re-mapped along with the state flow transition of AUTOSAR NM Algorithm. A re-defined test case design and simulation for vehicle model is created. Especially it focuses on validating the impact of functional CAN signals on DUT’s sleep/wake-up performance.
Journal Article

An Adaptive Neuro-Fuzzy Inference System (ANFIS) Based Model for the Temperature Prediction of Lithium-Ion Power Batteries

2018-08-14
Abstract Li-ion batteries have been widely applied in the areas of personal electronic devices, stationary energy storage system and electric vehicles due to their high energy/power density, low self-discharge rate and long cycle life etc. For the better designs of both the battery cells and their thermal management systems, various numerical approaches have been proposed to investigate the thermal performance of power batteries. Without the requirement of detailed physical and thermal parameters of batteries, this article proposed a data-driven model using the adaptive neuro-fuzzy inference system (ANFIS) to predict the battery temperature with the inputs of ambient temperature, current and state of charge. Thermal response of a Li-ion battery module was experimentally evaluated under various conditions (i.e. ambient temperature of 0, 5, 10, 15 and 20 °C, and current rate of C/2, 1C and 2C) to acquire the necessary data sets for model development and validation.
Journal Article

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

2018-04-18
Abstract Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this paper quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate.
Journal Article

Contribution of the Mechanical Linkage in Gear Shift Feel of North-South Transmission

2017-10-08
Abstract Today’s automotive industry is facing cutthroat competition, especially in passenger vehicle business. Manufacturers around the globe are developing innovative and new products keeping focus on end customer; thus customer's opinion and perception about the product has become a factor of prime importance. Customer touch points such as gear shift lever, clutch, brakes, steering etc. are thus gaining more and more importance. Car companies are trying to induce more and more luxuries in these touch points so that they impress customer and create a positive opinion about the product. On the other hand manufacturers are also trying to manage profits. Companies thus need to find the best fit solution for improvising customer touch points with optimized costs. The performance of these touch points is driven by subsystems of mechanical components like mechanical linkage.
Journal Article

Determination of Influence of Parameters on Undercarriage Shock Absorber

2018-12-31
Abstract The simple oleo pneumatic (shock absorber) model was developed using the available computational fluid dynamics (CFD) program to understand how various parameters influence the performance of the undercarriage shock absorber. The study is divided into two parts: first part is focused on the influence of orifice geometry and the second part of the study is focused on the other parameters including chamber geometry. Both the studies are carried out using design of experiments (DOE) for the same output characteristics (response). In this study, the impacts on the flow behavior due to the orifice shapes are also studied. The results and the other outcomes are shown in the form of DOE parameters such as main effect plots and interaction plots.
Journal Article

Dynamic Particle Generation/Shedding in Lubricating Greases Used in Aerospace Applications

2018-08-03
Abstract The purpose of this study is to examine the phenomenon of Dynamic Particle Generation in lubricating greases that are used in a variety of critical Aerospace mechanisms. Particle Generation occurs in bearings, ball screws, and other mechanical devices where dynamic conditions are present. This should not be confused with outgassing as particle generation is unrelated to the pressure effects on a system. This is a critical factor in many systems as particle generation can contaminate systems or processes causing them to fail. These failures can lead to excessive costs, production failure, and equipment damage. In this study, several greases made from Multiplyalkylated Cyclopentane and Perfluoropolyether base fluids were tested to evaluate their particle generation properties. This particle generation phenomenon was studied using a custom test rig utilizing a high precision cleanroom ball-screw to simulate true application conditions.
Journal Article

Stability Analysis of Combined Braking System of Tractor-Semitrailer Based on Phase-Plane Method

2018-06-04
Abstract An analysis method for the stability of combined braking system of tractor-semitrailer based on phase-plane is investigated. Based on a 9 degree of freedom model, considering longitudinal load transfer, nonlinear model of tire and other factors, the braking stability of tractor-semitrailer is analyzed graphically on the phase plane. The stability of both tractor and semitrailer with different retarder gear is validated with the energy plane, β plane, yaw angle plane and hinged angle plane. The result indicates that in the long downhill with curve condition, both tractor and semitrailer show good stability when retarder is working at 1st and 2nd gear, and when it is at 3rd gear, the tractor is close to be unstable while semitrailer is unstable already. Besides, tractor and semitrailer both lose stability when retarder is working at the 4th gear.
Journal Article

3D-CFD-Study of Aerodynamic Losses in Compressor Impellers

2018-07-05
Abstract Due to the increasing requirements for efficiency, the wide range of characteristics and the improved possibilities of modern development and production processes, compressors in turbochargers have become more individualized in order to adapt to the requirements of internal combustion engines. An understanding of the working mechanisms as well as an understanding of the way that losses occur in the flow allows a reduced development effort during the optimization process. This article presents three-dimensional (3D) Computational Fluid Dynamics (CFD) investigations of the loss mechanisms and quantitative calculations of individual losses. The 3D-CFD method used in this article will reduce the drawbacks of one-dimensional calculation as far as possible. For example, the twist of the blades is taken into account and the “discrete” method is used for loss calculation instead of the “average” method.
Journal Article

Investigation of Fatigue Life of Wheels in Commercial Vehicles

2018-08-21
Abstract In India, vehicle population increases every day along with road accidents by 2.5% every year. About 7.7% of accidents are caused by wheel separation, 60% of which are due to nut-related problems. Wheel separations in vehicles occur due to fastener issues and fatigue failures in bolts. A study of the reasons for and mechanisms of nut loosening showed that left-hand side wheels detached and fracture failure occurred in right-hand side studs. Fatigue life of wheels with Nord-Lock washer and without washer is determined by using numerical analysis as per the IS 9438 cornering fatigue test. These numerical results are compared with experimental results.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Electrifying Long-Haul Freight—Part II: Assessment of the Battery Capacity

2019-01-25
Abstract Recently, electric heavy-duty tractor-trailers (EHDTTs) have assumed significance as they present an immediate solution to decarbonize the transportation sector. Hence, to illustrate the economic viability of electrifying the freight industry, a detailed numerical model to estimate the battery capacity for an EHDTT is proposed for a route between Washington, DC, to Knoxville, TN. This model incorporates the effects of the terrain, climate, vehicular forces, auxiliary loads, and payload in order to select the appropriate motor and optimize the battery capacity. Additionally, current and near-future battery chemistries are simulated in the model. Along with equations describing vehicular forces based on Newton’s second law of motion, the model utilizes the Hausmann and Depcik correlation to estimate the losses caused by the capacity offset of the batteries. Here, a Newton-Raphson iterative scheme determines the minimum battery capacity for the required state of charge.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Investigations on Drive Axle Thermal Behaviour: Power Loss and Heat-Transfer Estimations

2018-03-08
Abstract In the present study, a truck drive axle and its gear set are analysed. As the gear set is a hypoid or a spiral bevel one, sliding and so tooth friction are an important source of dissipation. Other losses are mainly due to rolling element bearings and oil churning. The power losses are first calculated according to relationships given in ISO technical report. As comparison with test results shows great discrepancies, some modifications of the previous formulae are proposed. The thermal exchanges are also reviewed. Finally, two methods to obtain the bulk temperatures of the gear set are compared: a classical approach which focuses on the gear set only and a global approach which considers the complete axle using the thermal-network method.
Journal Article

Modelling of a Variable Displacement Lubricating Pump with Air Dissolution Dynamics

2018-04-18
Abstract The simulation of lubricating pumps for internal combustion engines has always represented a challenge due to the high aeration level of the working fluid. In fact, the delivery pressure ripple is highly influenced by the effective fluid bulk modulus, which is significantly reduced by the presence of separated air. This paper presents a detailed lumped parameter model of a variable displacement vane pump with a two-level pressure setting, in which the fluid model takes into account the dynamics of release and dissolution of the air in the oil. The pump was modelled in the LMS Imagine.Lab Amesim® environment through customized libraries for the evaluation of the main geometric features. The model was validated experimentally in terms of pressure oscillations in conditions of low and high aeration. The fraction of separated air in the reservoir of the test rig was measured by means of an X-ray technique.
Journal Article

Influence of Miller Cycles on Engine Air Flow

2018-04-18
Abstract The influence of the intake valve lift of two Miller cycles on the in-cylinder flow field inside a DISI engine is studied experimentally since changes of the engine flow field directly affect the turbulent mixing and the combustion process. For the analysis of the impact of the valve timing on the general flow field topology and on the large-scale flow structures, high-speed stereo-scopic particle-image velocimetry measurements are conducted in the tumble plane and the cross-tumble plane. The direct comparison to a standard Otto intake valve lift curve reveals evidently different impacts on the flow field for both Miller cam shafts. A Miller cycle that features late intake valve closing shows a flow field comparable to the standard Otto valve timing and a tumble vortex of strong intensity can be identified.
Journal Article

Equivalent Stiffness and Equivalent Position for Torque Strut Mount in Powertrain Mounting System

2018-06-18
Abstract The torque strut is a key mount in three-point pendulum mounting system of powertrain. Its equivalent stiffness in two orthogonal directions is close to zero meanwhile the equivalent stiffness in another direction always remains the same as the original stiffness, which facilitates mounting system design and matching and has been widely used. In this article, it is aimed to answer the issues for the equivalence of torque strut mount theoretically, such as the equivalent linear stiffness, equivalent torsional stiffness and equivalent position. The torque strut mount has been simplified to an equivalent ordinary mount, the equivalent linear stiffness and equivalent torsional stiffness are derived, and has been verified by ADAMS, then the equivalent position is discussed. The effect of the mass of torque strut on powertrain modals is investigated.
Journal Article

Elasto-Hydrodynamic Bearing Model in Powertrain Multi-Body Simulation

2018-04-18
Abstract Multi-body simulation is a well-established simulation technique in the analysis of internal combustion engines dynamics. The enhancement of multi-body simulation especially regarding flexible structures included effects of structural dynamics in the analysis and helped not only to broaden the field of application but also improved quality of the results. In connection to that there is a steady increase in the need for enhanced and refined modeling approaches for technical subsystems such as journal bearings. The paper on hand will present the elasto-hydrodynamic journal bearing module for the software FEV Virtual Engine which is a vertical application to the generic multi-body simulation suite Adams.
Journal Article

Development and Validation Procedure of a 1D Predictive Model for Simulation of a Common Rail Fuel Injection System Controlled with a Fuel Metering Valve

2018-07-10
Abstract A fully predictive one-dimensional model of a Common Rail injection apparatus for diesel passenger cars is presented and discussed. The apparatus includes high-pressure pump, high-pressure pipes, injectors, rail and a fuel-metering valve that is used to control the rail pressure level. A methodology for separately assessing the accuracy of the single submodels of the components is developed and proposed. The complete model of the injection system is finally validated by means of a comparison with experimental high-pressure and injected flow-rate time histories. The predictive model is applied to examine the fluid dynamics of the injection system during either steady-state or transient operations. The influence of the pump delivered flow-rate on the rail-pressure time history and on the injection performance is analysed for different energizing times and nominal rail pressure values.
X