Refine Your Search

Topic

Search Results

Journal Article

Evaluation of the Energy Consumption of a Thermal Management System of a Plug-In Hybrid Electric Vehicle Using the Example of the Audi Q7 e-tron

2018-06-18
Abstract The transition of vehicle propulsion technologies away from conventional internal combustion engines toward more electrically dominant systems such as plug-in hybrid electric vehicles (PHEV) poses new challenges for vehicle thermal management systems. Especially at low ambient temperatures, consumer demand for cabin comfort as well as legislatively imposed safety considerations significantly reduce the electric driving range because only electric energy can be used for heating during emissions-free driving modes. Recent developments to find energy efficient thermal management systems for electric and plug-in electric vehicles have led to the implementation of automotive heat pump systems. As an alternative approach to meet dynamic heating demands and safety regulations, these systems use heat at a low temperature level, for example the waste heat of electric drivetrain components, to heat the passenger compartment efficiently and therefore increase the electric driving range.
Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

Application of a New Method for Comparing the Overall Energy Consumption of Different Automotive Thermal Management Systems

2018-10-03
Abstract This article applies a new method for the evaluation and estimation of real-life energy consumption of two different thermal management systems based on driving behavior in the course of the day. Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to using secondary loop systems as an alternative approach for meeting dynamic heating and cooling demands and reducing refrigerant charge. However, the additional layer of thermal resistance, which influences the system’s transient behavior as well as passenger compartment comfort during cool-down or heat-up, makes it difficult to estimate the annual energy consumption. In this article, the overall energy consumption of a conventional and a secondary loop system is compared using a new method for describing actual customers’ driving behavior in the course of the day.
Journal Article

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

2018-04-18
Abstract Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this paper quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate.
Journal Article

Parasitic Battery Drain Problems and AUTOSAR Acceptance Testing

2018-04-18
Abstract Battery Drain problems can occur in the vehicle due to improper network management between electronic control units (ECUs). Aim of this paper is to identify the factors that cause transmission and cease of transmission of a network management message of an ECU along with its application messages that controls the sleep/wake-up performance of other ECUs in the network. Strategy used here is, based on the root cause analysis of problems found in Display unit in vehicle environment, the functional CAN signals impacting sleep/wake-up behavior is re-mapped along with the state flow transition of AUTOSAR NM Algorithm. A re-defined test case design and simulation for vehicle model is created. Especially it focuses on validating the impact of functional CAN signals on DUT’s sleep/wake-up performance.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

An Investigation on the Electrical Energy Capacity of Cylindrical Lithium-Ion and Lithium Iron Phosphate Battery Cells for Hybrid Aircraft

2020-10-19
Abstract Improving the energy performance of batteries can increase the reliability of electric aircraft. To achieve this goal, battery management systems (BMS) are required to keep the temperature within the battery pack and cells below the safety limits and make the temperature distribution as even as possible. Batteries have a limited service life as a result of unwanted chemical reactions, physical changes that cause the loss of active materials in the structure, and internal resistance increase during the charging and discharging cycle of the battery. These changes usually affect the electrical performance of batteries. Battery life can be increased only by reducing or preventing unwanted chemical reactions. Lithium-ion (Li-ion) batteries are a suitable option due to their high specific energy and energy density advantages. In this study, the necessity of heat management is emphasized. The discharge tests of the Li-ion battery provided 94.6 Wh under 10C and 90.9 Wh under 1C.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Electrifying Long-Haul Freight—Part II: Assessment of the Battery Capacity

2019-01-25
Abstract Recently, electric heavy-duty tractor-trailers (EHDTTs) have assumed significance as they present an immediate solution to decarbonize the transportation sector. Hence, to illustrate the economic viability of electrifying the freight industry, a detailed numerical model to estimate the battery capacity for an EHDTT is proposed for a route between Washington, DC, to Knoxville, TN. This model incorporates the effects of the terrain, climate, vehicular forces, auxiliary loads, and payload in order to select the appropriate motor and optimize the battery capacity. Additionally, current and near-future battery chemistries are simulated in the model. Along with equations describing vehicular forces based on Newton’s second law of motion, the model utilizes the Hausmann and Depcik correlation to estimate the losses caused by the capacity offset of the batteries. Here, a Newton-Raphson iterative scheme determines the minimum battery capacity for the required state of charge.
Journal Article

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

2020-02-07
Abstract This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

Two-Way Coupled CFD Approach for Predicting Gear Temperature of Oil Jet Lubricated Transmissions

2018-07-24
Abstract This article focuses on the development of a two-way coupled methodology to predict gear temperature of oil jet lubricated transmissions using commercial software for computational fluid dynamics simulation. The proposed methodology applies an overset mesh technique to model the gear interlocking motion, multiphase of air-oil mixture, and heat transfer. Two gear pairs were used to develop and validate the methodology, an overdrive helical gear pair of a commercial vehicle transmission and a standard spur gear pair. Different oil jet lubrication methods were investigated using the proposed methodology, such as oil jet directed at the into-mesh position and at the out-of-mesh position. This investigation showed that out of mesh lubrication direction shows better cooling performance which is in well agreement with previous studies of literature.
Journal Article

Lightweight Carbon Composite Chassis for Engine Start Lithium Batteries

2018-03-07
Abstract The supersession of metallic alloys with lightweight, high-strength composites is popular in the aircraft industry. However, aviation electronic enclosures for large format batteries and high power conversion electronics are still primarily made of aluminum alloys. These aluminum enclosures have attractive properties regrading structural integrity for the heavy internal parts, electromagnetic interference (EMI) suppression, electrical bonding for the internal cells, and/or electronics and failure containment. This paper details a lightweight carbon fiber composite chassis developed at Meggitt Sensing Systems (MSS) Securaplane, with a copper metallic mesh co-cured onto the internal surfaces resulting in a 50% reduction in weight when compared to its aluminum counterpart. In addition to significant weight reduction, it provides equal or improved performance with respect to EMI, structural and flammability performance.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Journal Article

Development of a Catalytic Converter Cool-Down Model to Investigate Intermittent Engine Operation in HEVs

2018-10-29
Abstract Catalytic converters, a primary component in most automotive emissions control systems, do not function well until they are heated substantially above ambient temperature. As the primary energy for catalyst heating comes from engine exhaust gases, plug-in hybrid electric vehicles (PHEVs) that have the potential for short and infrequent use of their onboard engine may have limited energy available for catalytic converter heating. This article presents a comparison of multiple hybrid supervisory control strategies to determine the ability to avoid engine cold starts during a blended charge-depleting propulsion mode. Full vehicle and catalytic converter simulations are performed in parallel with engine dynamometer testing in order to examine catalyst temperature variations during the course of the US06 City drive cycle. Emissions and energy consumption (E&EC) calculations are also performed to determine the effective number of engine starts during the drive cycle.
Journal Article

Simulation Study on Influence of Environmental Temperature on Current-Carrying Capacity of Automotive Electrical Connector

2021-11-12
Abstract The purpose of this article is to reduce the adverse effects of temperature rise on the electrical connector, reduce the failure risk of electrical connector due to the mismatch of current-carrying capacity selection, and improve the service life of the electrical connector. This article takes a certain type of vehicle electric connector as the research object. An accurate contact pair model of the electrical connector is established by SOLIDWORKS software. The force and thermoelectric coupling simulation analysis of the 3D solid model with reasonable load and boundary conditions was carried out by ABAQUS software. The results show that the insertion force and positive force of the electrical connector terminal are in line with the values specified in the standard.
Journal Article

Discussion on Charging Control Strategy for Power Battery at Low Temperatures

2017-10-08
Abstract In the case of electric vehicles, due to the charging current limitation of lithium battery at low temperatures (below -20°C), it has been proposed to heat the battery pack up to a suitable temperature range before charging through a liquid-heating plate with PTC. However, at a low state of charge (SOC), there is a question which one could take the place of battery pack to supply power for PTC when heating. So that off-board charger (OFC) has been considered to supply power for PTC in this paper. In order to control the current charging into the battery pack as less as possible at low temperatures, three control schemes of battery management system (BMS) are proposed and compared. Scheme 1: BMS controls the value of charging current request close to the working current of PTC. Scheme 2: BMS controls the value of charging voltage request to reach a state of relative balance. Scheme 3: BMS disconnects the pack from the charger and keeps the connection between PTC and charger.
X