Refine Your Search

Topic

Search Results

Journal Article

Design, Analysis, Simulation and Validation of Automobile Suspension System Using Drive-Shaft as a Suspension Link

2018-04-18
Abstract With increasing demands for higher performance along with lower vehicle emissions, lightweight vehicle system construction is key to meet such demands. Suspension and transmission assemblies being the key areas for weight-reduction, we have designed a revolutionary new type of suspension system which combines the suspension links with the powertrain assembly and thus completely eliminates one suspension member. Less weight means lower fuel-consumption with improved passenger-comfort and road-holding due to reduction in unsprung mass. Elimination of a suspension link reduces the overall cost of material, machining & fabrication making our design cost-effective than existing setups. This paper deals with the design and implementation of of our concept. A working prototype is also constructed and tested which completely validates our design.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks

2018-04-17
Abstract The development, analysis, and optimization of battery electric class-7 heavy-duty trucks equipped with multi-speed transmissions are discussed in this paper. The designs of five new traction motors-fractional-slot, concentrated winding machines-are proposed for use in heavy-duty electric trucks. The procedure for gear-ratio range selection is outlined and ranges of gear ratios for three-to six-speed transmission powertrains are calculated for each of the proposed electric traction motors. The simulation and gear-ratio optimization tasks for class-7 battery electric trucks are formulated. The energy consumption of the e-truck with the twenty possible powertrain combinations is minimized over the four driving cycles and the most efficient powertrain layouts that meet the performance criteria are recommended.
Journal Article

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

2019-10-15
Abstract Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics.
Journal Article

Development of a Learning Capability in Virtual Operator Models

2019-03-14
Abstract This research developed methods for a virtual operator model (VOM) to learn the optimal control inputs for operation of a virtual excavator. Virtual design, used to model, simulate, and test new features, has often been limited by the fidelity of the virtual model of human operators. Human operator learns, over time, the capability, limits, and control characteristics of new vehicles to develop the best strategy to maximize the efficiency of operation. However, VOMs are developed with fixed strategies and for specific vehicle models (VMs) and require time-consuming re-tuning of the VOM for each new vehicle design. Thus, there typically is no capability to optimize strategies, taking account of variation in vehicle capabilities and limitations. A VOM learning capability was developed to optimize control inputs for the swing-to-pile task of a trenching operation. Different control strategies consisted of varied combinations of speed control, position control, and coast.
Journal Article

Fatigue Evaluation of Multi-Degree of Freedom, Frequency Domain, Stochastic, Truck Road Load Models

2019-02-11
Abstract A number of semi-deterministic and stochastic formulations of multi-degree of freedom, frequency domain load models for heavy truck chassis are proposed and evaluated. The semi-deterministic models aim at reproducing the damage of a specific vehicle, while the stochastic ones aim to describe a collection of vehicle loads. The stochastic models are divided into two groups: Monte Carlo based and models based on single spectrum matrices. In both cases, the objective is to provide a load model that may be used to produce a design with a certain probability of survival. The goodness of the models is evaluated through a comparison of their damage outcomes with the corresponding damages of a set of time domain loads. This original time domain load set consists of chassis accelerations collected from seven physical trucks.
Journal Article

Design and Analysis of a Formula SAE Vehicle Chain Sprocket under Static and Fatigue Loading Conditions

2021-04-13
Abstract In this study, an attempt is made to deduce the number of teeth in the driven sprocket of a Formula SAE (FSAE) car using Optimum Lap software based on track run simulation of the car, which comes out to be 51 teeth. The sprocket material was selected as Aluminum Alloy AL-7075 T6 because of its strength-to-weight ratio. In addition to it, the generative design strategy by Fusion-360 was utilized to automatically engender the slotted sprocket design on the ground of stress induced on it during operation. Furthermore, the design was verified virtually carrying out static structural and fatigue analysis under the worst-case scenario in CAE software. The overall weight reduction achieved was around 45%. Furthermore, the center-to-center distance between the sprockets and the number of chain links required were also calculated on the basis of space constraints and the wrap angle of the sprocket.
Journal Article

Integrating Life Cycle Sustainability Assessment Results Using Fuzzy-TOPSIS in Automotive Lightweighting

2021-04-26
Abstract This article presents the application of the Life Cycle Sustainability Assessment (LCSA) methodology for integrating environmental, economic, and social assessment results by the direct application of Fuzzy-Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The aim of this work is to test the applicability of LCSA methodology as a potential tool to support the design phase, providing solutions tailored to its application in the automotive sector. To validate the proposed procedure, two alternative design solutions for a car dashboard are used as case study. In response to the need of methods and tools for evaluating and comparing sustainability of alternative design solutions, LCSA is seen as one of the most promising method, but which needs further testing with real cases to solve some methodological challenges.
Journal Article

A Novel Approach for Integrating the Optimization of the Lifetime and Cost of Manufacturing of a New Product during the Design Phase

2021-05-13
Abstract Maximum lifetime and minimum manufacturing cost for new products are the primary goals of companies for competitiveness. These two objectives are contradictory and the geometric dimensions of the products directly control them. In addition, the earlier design errors of new products are predicted, the easier and more inexpensive their rectification becomes. To achieve these objectives, we propose in this article a novel model that makes it possible to solve the problem of optimizing the lifespan and the manufacturing cost of new products during the phase of their design. The prediction of the life of the products is carried out by an energy damage method implemented on the finite element (FE) calculation by using the ABAQUS software. The manufacturing cost prediction is carried out by applying the ABC cost estimation analytical method. In addition, the optimization problem is solved by the method of genetic algorithms.
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Journal Article

Parametric Study of Asymmetric Side Tapering in Constant Cross Wind Conditions

2018-06-28
Abstract Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, which is not typically aerodynamic. Drag can be reduced with a number of passive and active methods, which are generally prioritised at zero yaw, which is not entirely representative of the “on road” environment. As such, to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw, an adaptive system that applies vertical side edge tapers independently is tested statically. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles (0°, ±2.5°, ±5° and ±10°) on the force and moment coefficients.
Journal Article

Vehicle Stability Control through Optimized Coordination of Active Rear Steering and Differential Driving/Braking

2018-07-05
Abstract In this article, a hierarchical coordinated control algorithm for integrating active rear steering and driving/braking force distribution (ARS+D/BFD) was presented. The upper-level control was synthesized to generate the required rear steering angle and external yaw moment by using a sliding-mode controller. In the lower-level controller, a control allocation algorithm considering driving/braking actuators and tire forces constraints was designed to assign the desired yaw moment to the four wheels. To this end, an optimization problem including several equality and inequality constraints were defined and solved analytically. Finally, computer simulation results suggest that the proposed hierarchical control scheme was able to help to achieve substantial enhancements in handling performance and stability.
Journal Article

Reduced-Order Modeling of Vehicle Aerodynamics via Proper Orthogonal Decomposition

2019-10-21
Abstract Aerodynamic optimization of the exterior vehicle shape is a highly multidisciplinary task involving, among others, styling and aerodynamics. The often differing priorities of these two disciplines give rise to iterative loops between stylists and aerodynamicists. Reduced-order modeling (ROM) has the potential to shortcut these loops by enabling aerodynamic evaluations in real time. In this study, we aim to assess the performance of ROM via proper orthogonal decomposition (POD) for a real-life industrial test case, with focus on the achievable accuracy for the prediction of fields and aerodynamic coefficients. To that end, we create a training data set based on a six-dimensional parameterization of a Volkswagen passenger production car by computing 100 variants with Detached-Eddy simulations (DES).
Journal Article

Nonlinear Flutter Analysis of Curved Panel under Mechanical and Thermal Loads Using Semi-Analytical and Finite Volume Methods

2020-11-20
Abstract The vibration behavior of components exposed to aerodynamic loads must be taken into consideration when designing aerial vehicles. Numerical simulation plays a key role in developing more realistic analytical models for panel flutter analysis. The notable feature of the present research is the use of two methods for the aeroelastic analysis of two-dimensional curved panels with cylindrical bending. In the first approach, the finite volume method (FVM) is used for supersonic viscous flow and nonlinear structural model while full Navier-Stokes equations are discretized. In the second approach, the third-order nonlinear piston theory aerodynamics in addition to mechanical and thermal loads is assumed. Moreover, the semi-analytical weighted residual method for the nonlinear curved panel is utilized. These approaches are concurrently compared with each other for the first time. Furthermore, Hamilton’s principle is used and partial differential equations (PDEs) are derived.
Journal Article

Enhanced Lateral and Roll Stability Study for a Two-Axle Bus via Hydraulically Interconnected Suspension Tuning

2018-11-19
Abstract The suspension system has been shown to have significant effects on vehicle performance, including handling, ride, component durability, and even energy efficiency during the design process. In this study, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance both roll and lateral dynamics of a two-axle bus. The roll-plane stability analysis for the HIS system has been intensively explored in a number of studies, while only few efforts have been made for suspension tuning, especially considering lateral plane stability. This article aims to explore the integrated lateral and roll dynamics by suspension tuning of a two-axle bus equipped with HIS system. A ten-degree-of-freedom (DOF) lumped-mass vehicle model is integrated with either transient mechanical-hydraulic model for HIS or the traditional suspension components, namely, shock absorber and anti-roll bar (ARB).
Journal Article

Model-Based Precise Air-Fuel Ratio Control for Gaseous Fueled Engines

2020-10-09
Abstract In this article, an adaptive state estimation algorithm for precise air-fuel ratio (AFR) control is presented. AFR control is a critical part of internal combustion engine (ICE) control, and tight AFR control delivers lower engine emissions, better engine fuel economy, and better engine transient performance. The proposed control algorithm significantly improves transient AFR control to eliminate and reduce the amplitude of the lean and rich spikes during transients. The new algorithm is first demonstrated in simulation (using Matlab/SimulinkTM and GT-PowerTM) and then verified on a test engine. The engine tests are conducted using the European Transient Cycle (ETC) with HoribaTM double-ended dynamometer. The developed algorithm utilizes a nonlinear physics-based engine model in the observer and advanced control principles with modifications to solve real industrial control issues.
Journal Article

Rate Shape Design for Gasoline-Like Fuels at High Injection Pressures Using One-Dimensional Hydraulic Models

2022-01-13
Abstract Recent research has demonstrated that gasoline compression ignition (GCI) can improve the soot-oxides of nitrogen (NOx) trade-off of conventional diesel engines due to the beneficial properties of light distillate fuels. In addition to air handling and aftertreatment, fuel systems also require further development to realize the potential efficiency and emissions benefits of GCI. Injector one-dimensional (1-D) hydraulic modeling is an important design tool used for this purpose. The current study is a continuation of prior work that used computed physical fuel properties and hydraulic models to accurately simulate high-pressure injection behavior relevant to GCI. With respect to fuel characteristics for the model, physical properties were validated by direct comparison to measurements at temperatures and pressures reaching 150°C and 2500 bar, respectively.
Journal Article

Research on Yaw Stability Control of Multi-axle Electric Vehicle with In-Wheel Motors Based on Fuzzy Sliding Mode Control

2021-12-22
Abstract This research develops a hierarchical control strategy to improve the stability of multi-axle electric vehicles with in-wheel motors while driving at high speed or on low adhesion-coefficient roads. The yaw rate and sideslip angle are chosen as the control parameters, and the direct yaw-moment control (DYC) method is employed to ensure the yaw stability of the vehicle. On the basis of this methodology, a hierarchical yaw stability control architecture that consists of a state reference layer, a desired moment calculation layer, a longitudinal force calculation layer, and a torque distribution layer is proposed. The ideal vehicle steering state is deduced by the state reference layer according to a linear two-degree-of-freedom (2-DOF) vehicle dynamics model.
Journal Article

Investigation of Forming Process for High-Expansion-Ratio AL6061 Tube Using Rotary Swaging

2022-04-22
Abstract As bicycle design continues to develop, consumers are not satisfied with just the convenience and power-saving features of bicycles, but they also demand a fancy appearance. To achieve dramatic deforming of bike frames, an extreme high-profile difference is required. Thus, this study used rotary swaging, which is the best forging method among shrink forming processes, as the preforming process. The tube diameter reduction rates of 0.28 and 0.31 were set as the main parameters, and the effects of feeding speed, feeding method, and friction factor on the formed tube were analyzed. The results indicated that a higher feeding speed results in a lower rate of tube thickness increase and a lower friction factor results in a lower rate of tube thickness increase. Regarding the effects of feeding methods, the automatic feeding method yielded better surface roughness than the manual method.
Journal Article

Research on Path-Tracking Control Method of Intelligent Vehicle Based on Adaptive Two-Point Preview

2021-04-19
Abstract Preview control algorithm has been widely implemented in intelligent vehicle path-tracking controllers. The key challenge of developing such control is to determine the appropriate preview distance, which plays a vital role in achieving the optimal trade-off between two competing control objectives, tracking accuracy and driving stability. Additionally, vehicle speed and road radius have a significant impact on the optimal preview distance. Thus a hierarchical vehicle path-tracking control strategy based on the adaptive two-point preview is proposed in this article. In the upper-layer module, the two-point preview driver model is constructed to obtain the target yaw rate according to the comprehensive deviation. In the lower-layer module, the neural network sliding mode controller is employed to track the yaw rate and, therefore, achieve intelligent vehicle self-tracking.
X