Refine Your Search

Topic

Search Results

Journal Article

Investigations on Spark and Corona Ignition of Oxymethylene Ether-1 and Dimethyl Carbonate Blends with Gasoline by High-Speed Evaluation of OH* Chemiluminescence

2018-03-01
Abstract Bio-fuels of the 2nd generation constitute a key approach to tackle both Greenhouse Gas (GHG) and air quality challenges associated with combustion emissions of the transport sector. Since these fuels are obtained of residual materials of the agricultural industry, well-to-tank CO2 emissions can be significantly lowered by a closed-cycle of formation and absorption of CO2. Furthermore, studies of bio-fuels have shown reduced formation of particulate matter on account of the fuels’ high oxygen content therefore addressing air quality issues. However, due to the high oxygen content and other physical parameters these fuels are expected to exhibit different ignition behaviour. Moreover, the question is whether there is a positive superimposition of the fuels ignition behaviour with the benefits of an alternative ignition system, such as a corona ignition.
Journal Article

Soot Observations and Exhaust Soot Comparisons from Ethanol-Blended and Methanol-Blended Gasoline Combustion in a Direct-Injected Engine

2018-05-07
Abstract Particulate formation was studied under homogeneous-intent stoichiometric operating conditions when ethanol-blended (E10) or methanol-blended (M20) gasoline fuel was injected during intake stroke of a 4-stroke direct-injected engine. The engine was tested at wide open throttle under naturally aspirated conditions for a speed-load of 1500 rev/min and 9.8 bar indicated mean effective pressure. In-cylinder soot observations and exhaust soot measurements were completed for different fuel rail pressures, injection timings, coolant and piston temperatures of the optical engine. Fuel delivery settings were tested with both single and split injections during intake stroke. The target piston temperature of the optical engine was attained using pre-determined number of methane port fuel injection firing cycles. Overall, the in-cylinder soot observations correlated well with the engine-out soot measurements. A warmer cylinder head favored soot reduction for both fuels.
Journal Article

Corrosion Behavior of Automotive Materials with Biodiesel: A Different Approach

2018-05-07
Abstract The issue of material compatibility of biodiesel has been discussed by few researchers but the reported corrosion rates were alarmingly high. This study addresses the corrosion issue of biodiesel with automotive materials with a different but systematic approach following SAE J1747 standard. In earlier studies while conducting material compatibility studies with biodiesel, mention of any specific standard/s has not been generally observed. Earlier studies were conducted by storing the samples for a long time without any change of fuel. However in actual automotive application, change of fuel is always on a periodic basis due to consumption of fuel and the SAE standard recommends for the same. This difference has a significant effect on the material compatibility as this periodic change does not result in making the fuel particularly biodiesel more acidic which is otherwise when stored for a long time during the test period.
Journal Article

Compatibility Assessment of Fuel System Thermoplastics with Bio-Blendstock Fuel Candidates Using Hansen Solubility Analysis

2018-03-01
Abstract The compatibility of key fuel system infrastructure plastics with 39 bio-blendstock fuel candidates was examined using Hansen solubility analysis. Fuel types included multiple alcohols, esters, ethers, ketones, alkenes and one alkane. These compounds were evaluated as neat molecules and as blends with the gasoline surrogate, dodecane and a mix of dodecane and 10% ethanol (E10D). The plastics included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), along with several nylon grades. These materials have been rigorously studied with other fuel types, and their volume change results were found to correspond well with their predicted solubility levels.
Journal Article

The Impacts of Pd in BEA Zeolite on Decreasing Cold-Start NMOG Emission of an E85 Fuel Vehicle

2018-10-25
Abstract In the development of hydrocarbon (HC) traps for E85 fuel vehicle emission control, the addition of palladium (Pd) to BEA zeolite was studied for trapping and decreasing cold-start ethanol emissions. BEA zeolite after a laboratory aging at 750°C for 25 hours released nearly all of the trapped ethanol as unconverted ethanol at low temperature, and some ethene was released at a higher temperature by a dehydration reaction. The addition of Pd to BEA zeolite showed a decrease in the release of unconverted ethanol emissions even after the lab aging. The release of methane (CH4), acetaldehyde (CH3CHO), carbon monoxide (CO), and CO2 from Pd-BEA zeolite during desorption (temperature programmed desorption (TPD)) demonstrated that multiple ethanol reaction mechanisms were involved including dehydrogenation and decomposition reactions.
Journal Article

Limitations of Monoolein in Simulating Water-in-Fuel Characteristics of EN590 Diesel Containing Biodiesel in Water Separation Testing

2018-10-18
Abstract In modern diesel fuel a proportion of biodiesel is blended with petro-diesel to reduce environmental impacts. However, it can adversely affect the operation of nonwoven coalescing filter media when separating emulsified water from diesel fuel. This can be due to factors such as increasing water content in the fuel, a reduction in interfacial tension (IFT) between the water and diesel, the formation of more stable emulsions, and the generation of smaller water droplets. Standard water/diesel separation test methods such as SAE J1488 and ISO 16332 use monoolein, a universal surface-active agent, to simulate the effects of biodiesel on the fuel properties as part of water separation efficiency studies. However, the extent to which diesel/monoolein and diesel/biodiesel blends are comparable needs to be elucidated if the underlying mechanisms affecting coalescence of very small water droplets in diesel fuel with a low IFT are to be understood.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Computational Fluid Dynamic Simulation of In-Cylinder Pressures to Validate High-Range VCR

2018-10-22
Abstract This article serves as a proof-of-concept and feasibility analysis regarding a variable compression ratio (VCR) engine design utilizing an exhaust valve opening during the compression stroke to vary the compression ratio instead of the traditional method of changing the cylinder or piston geometry patented by Ford, Mercedes-Benz, Nissan, Peugeot, Gomecsys, et al. [1]. In this concept, an additional exhaust valve opening was used to reduce the virtual compression ratio of the engine, without geometric changes. A computational fluid dynamic model in ANSYS Forte was used to simulate a single-cylinder, cold flow, four-stroke, direct injection engine cycle. In this model, the engine was simulated at a compression ratio of 10:1. Then, the model was modified to a compression ratio of 17:1. Then, an additional valve opening at the end of the compression stroke was added to the 17:1 high compression model.
Journal Article

Compression Ratio Control of Free Piston Linear Generator with In-Cylinder Pressure Feedforward

2018-06-28
Abstract The free piston linear generator (FPLG) is a novel machine that functions as an Auxiliary Power Unit (APU) for hybrid electric vehicles, which contains two opposed free piston engines and one linear generator between them. FPLG has attracted extensive interest for its potential advantages in terms of high power density and multi-fuel flexibility. The guarantee of FPLG generating electricity steadily and efficiently is the high controllability of compression ratio. In this article, a control-oriented discrete-time model was established based on Otto cycle. Since the fluctuation of in-cylinder pressure caused by instable fuel injection mass and combustion process is the main disturbance, a composite controller is designed to precisely control the compression ratio of FPLG. The composite controller is made up of a feedforward controller and a feedback tracking controller.
Journal Article

Analysis of Regulated Pollutant Emissions and Aftertreatment Efficiency in a GTDi Engine Using Different SOI Strategies

2018-06-25
Abstract In order to improve performance and minimize pollutant emissions in gasoline turbocharged direct-injection (GTDi) engines, different injection strategies and technologies are being investigated. The inclusion of exhaust gas recirculation (EGR) and the variation of the start of injection (SOI) are some of these strategies that can influence the air-to-fuel (AF) mixture formation and consequently in the combustion process and pollutant emissions. This paper presents a complete study of the engine performance, pollutant emissions and aftertreatment efficiency that produces the SOI variation with a fixed EGR rate in a 4-cylinder, turbocharged, gasoline direct-injection engine with 2.0 L displacement. The equipment used in this study are TSI-EEPS for particle measurement and HORIBA MEXA 1230-PM for soot measurement being HORIBA MEXA 7100-DEGR with a heated line selector the system employed for regulated gaseous emission measurement and aftertreatment evaluation.
Journal Article

Development and Validation Procedure of a 1D Predictive Model for Simulation of a Common Rail Fuel Injection System Controlled with a Fuel Metering Valve

2018-07-10
Abstract A fully predictive one-dimensional model of a Common Rail injection apparatus for diesel passenger cars is presented and discussed. The apparatus includes high-pressure pump, high-pressure pipes, injectors, rail and a fuel-metering valve that is used to control the rail pressure level. A methodology for separately assessing the accuracy of the single submodels of the components is developed and proposed. The complete model of the injection system is finally validated by means of a comparison with experimental high-pressure and injected flow-rate time histories. The predictive model is applied to examine the fluid dynamics of the injection system during either steady-state or transient operations. The influence of the pump delivered flow-rate on the rail-pressure time history and on the injection performance is analysed for different energizing times and nominal rail pressure values.
Journal Article

Fueling an Engine by Ultrasonic Atomization, and Its Control

2018-08-08
Abstract This article presents work carried out on a small, 4-stroke, SI engine, incorporated with an ultrasonic atomizer-based fueling system. A disc-type ultrasonic atomizer having good atomization characteristics was incorporated in the air intake path of a single cylinder, two-wheeler engine, replacing the conventional carburetor. This new fueling system was introduced with the aim of reducing the engine fuel consumption, while looking for a possible reduction in exhaust emissions. An electronic control mechanism was devised to change the atomization rate, in order to set the desired equivalence ratio for optimum engine operation. Test results indicate a significant improvement in fuel consumption and brake thermal efficiency, with a good control over the equivalence ratio. The system also allows engine operation at equivalence ratios as low as 0.5, and hence could be adopted for ultra-lean engines.
Journal Article

Experimental Investigation of Ethanol-Diesel-Butanol Blends in a Compression Ignition Engine by Modifying the Operating Parameters

2018-10-31
Abstract The rapid utilization of fossil fuels has triggered the finding of alternative renewable fuel that replaces or reduces the consumption by alternative fuels for fueling compression ignition (CI) engines. One such renewable fuel is ethanol which can be manufactured from biomass. The present study details the utilization of an optimum amount of ethanol in CI engine by modifying the operating parameters. It was already published in the previous paper that 45% ethanol can be utilized along with diesel using 10% butanol as cosolvent. This fuel is also meeting the minimum requirement with respect to properties as per ASTM standards. This experimental study was performed to investigate the influence of modifying the engine operating parameters on the performance, combustion, and emission parameters fueled with the blend containing 45% ethanol under various load conditions.
Journal Article

Direct Versus Indirect Acting Piezoelectric CR Injectors: Comparison of Hydraulic Performance, Pollutant Emissions, Combustion Noise, and Fuel Consumption

2018-11-08
Abstract A comprehensive comparison between a direct acting and an indirect acting piezoelectric injector has been carried out both at the hydraulic rig and at the dynamometer cell. The working principle of these injector typologies is illustrated, and their hydraulic performance has been analyzed and discussed on the basis of experimental data collected at a hydraulic test rig. The injector characteristics, nozzle opening and closure delays, injector leakages, injected flow-rate profiles, injector-to-injector variability in the injected mass, injected volume fluctuations with the dwell time (DT), and minimum DT for fusion-free multiple injections have been compared in order to evaluate the impact of the injector driving system on the injection apparatus performance. The direct acting and indirect acting piezoelectric injectors have been installed on a Euro 5 diesel engine, which has been tested at a dynamometer cell.
Journal Article

Investigation into the Potentials of a Dedicated Multi-Point Injection System for a Production NG Single-Point Heavy-Duty Engine

2018-03-08
Abstract CNG is at present retaining a growing interest as a factual alternative to traditional fuels for SI engines, thanks to its high potentials in reducing the engine-out emissions. Increasing thrust into the exploitation of NG in the transport field is in fact produced by the even more stringent emission regulations that are being introduced into the worldwide scenario. Moreover, the transport sector accounts for the 27% of the overall energy consumptions and up to the 13% in terms of global emissions. The present paper aims at deeply investigating into the potentials of a heavy-duty engine running on CNG and equipped with two different injection systems, an advanced single point (SP) one and a prototype multi-point (MP) one. The considered 7.8-liter engine was designed and produced to implement a SP strategy and hence modified to run with a dedicated MP system.
Journal Article

Lean Burn Combustion of Iso-Octane in a Rapid Compression Machine Using Dual Mode Turbulent Jet Ignition System

2018-03-23
Abstract Turbulent jet ignition (TJI) is a pre-chamber initiated combustion technology that has been demonstrated to provide low temperature, faster burn rate combustion of lean and intake charge diluted air-fuel mixtures. Dual mode turbulent jet ignition (DM-TJI) is a novel concept wherein a separate air supply is provided for the pre-chamber apart from the conventional auxiliary fuel as supplied for TJI systems. The current study aims to extend the lean flammability limit of a gasoline-fueled engine using DM-TJI. Ignition delay time and combustion behavior of ultra-lean iso-octane/air mixture (Lambda ≅ 3.0) was studied using a TJI-based optically accessible rapid compression machine. High-speed fuel spray recordings in the pre-chamber were obtained using borescope imaging setup. Images of the reacting turbulent jet and subsequent combustion in the main chamber were captured using a visible color camera.
Journal Article

Influence of Miller Cycles on Engine Air Flow

2018-04-18
Abstract The influence of the intake valve lift of two Miller cycles on the in-cylinder flow field inside a DISI engine is studied experimentally since changes of the engine flow field directly affect the turbulent mixing and the combustion process. For the analysis of the impact of the valve timing on the general flow field topology and on the large-scale flow structures, high-speed stereo-scopic particle-image velocimetry measurements are conducted in the tumble plane and the cross-tumble plane. The direct comparison to a standard Otto intake valve lift curve reveals evidently different impacts on the flow field for both Miller cam shafts. A Miller cycle that features late intake valve closing shows a flow field comparable to the standard Otto valve timing and a tumble vortex of strong intensity can be identified.
Journal Article

A Novel Approach towards Stable and Low Emission Stratified Lean Combustion Employing Two Solenoid Multi-Hole Direct Injectors

2018-04-18
Abstract Stratified lean combustion has proven to be a promising approach for further increasing the thermal efficiency of gasoline direct injection engines in low load conditions. In this work, a new injection strategy for stratified operation mode is introduced. A side and a central-mounted solenoid multi-hole injector are simultaneously operated in a single-cylinder engine. Thermodynamic investigations show that this concept leads to improved stability, faster combustion, reduced particle number emissions, and lower fuel consumption levels compared to using only one injector. Experiments at an optical engine and three-dimensional computational fluid dynamics (CFD) simulations explain the improvements by a more compact mixture and reduced piston wetting with two injectors. Finally, the application of external EGR in combination with the above concept allows NOx emissions to be effectively kept at a low level while maintaining a stable operation.
Journal Article

Experimental Study of Ignition Delay, Combustion, and NO Emission Characteristics of Hydrogenated Vegetable Oil

2019-02-01
Abstract In this article, a comparative study of hydrogenated vegetable oil (HVO) and Diesel was performed in two constant volume combustion rigs and an optical accessible compression-ignited chamber (OACIC). Ignition, combustion, and nitric oxide (NO) emissions were studied under constant ambient gas density of 16.4 kg/m3, 21% vol oxygen concentration, and two different injection pressures of 800 and 1000 bar. Emission of NO was measured only in the OACIC, while a line-of-sight soot temperature distribution by applying two-color pyrometry was investigated in both setups. In general, the HVO as alternative fuel showed shorter ignition delay and less NO emission than Diesel for both injection pressures. Due to difference in the molecular structure, soot temperature of biofuel flames had narrower temperature spectrum than conventional fuel. Moreover, this study reveals the significance of wall-jet interaction for utilization of the biofuel.
X