Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Advanced Technology Spacesuit Ejector Testing and Analysis

1998-07-13
981670
An experimental study has been made of compressible jet mixing in an axisymmetric ejector of converging-diverging geometry. Three different jet sizes, 0.01, 0.0235, and 0.045 in. diameter were tested with three different mixer sizes, 0.25, 0.286, and 0.36 in. diameter. Jet and mixer combination were tested along with varying jet to mixer distances. The jet pressure varied from 20 to 200 psig, jet mass varied from 0.3 lbm/hr to 10 lbm/hr., and jet temperature varied from 21 to 24 deg. F. The secondary loop pressure varied from 3.7 to 25 psia, secondary mass flow varied from 1 to 70 lbm/hr, secondary loop pressure drop varied from 4 inH20 to 10 inH20, and secondary loop temperature varied same as jet temperature. The mass flow ratio was in the range of 2 to 14. The results were analyzed and compared with the Hickman and Nuckols and Sexton prediction models. The loss factor in Nuckols and Sexton model was adjusted to match the test results.
Technical Paper

Ejector Design for the Advanced Technology Spacesuit

1998-07-13
981669
In this investigation, analytical models were developed to predict the performance characteristics of axisymmetric single jet ejector. The ejector is divided into four parts, jet, mixer, nozzle, and diffuser. Basic flow equations were combined to calculate end to end flow characteristics for each of the four ejector components. Different jets and mixer combination were tested using three jet and three mixers. Characteristics curves have been drawn to predict flow characteristics of the ejector. Different configuration of jet and mixer incorporated different loss coefficient. Hence to get correct flow characteristics of the ejector right loss coefficient should be used.
Technical Paper

Supersonic Jet Design, Manufacturing, and Testing for an Advanced Technology Spacesuit Ejector

1999-07-12
1999-01-1996
Two types of supersonic jets, long and short, were designed for an advanced technology spacesuit ejector. Previously, a sonic jet was used in the ejector to improve its performance by reducing oxygen flow through thejetin order to achieve the required suit circulation. The manufacturing of long and short supersonic jets was a challenge which was met successfully by the Miniature Manufacturing Laboratory at NASA/JSC. The jets were tested and their performance was compared with the sonic jet, and it was found that both jets showed improved performance by achieving higher ejector mass ratios.
X