Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Technical Paper

A Test Plan for Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source.
Technical Paper

Aerogel-Based Insulation for Advanced Space Suit

Future spacesuits will require thermal insulation protection in low-earth orbit (LEO), in the near-earth neighborhood and in planetary environments. In order to satisfy all future exploration needs and lower production and maintenance costs, a common thermal insulation is desirable that will perform well in all these environments. A highly promising material is a fiber-reinforced aerogel composite insulation currently being developed at the Johnson Space Center. This paper presents an overview of aerogels and their manufacture, a summary of the development of a flexible fiber-based aerogel for NASA by Aspen Aerogels, Inc., and performance data of aerogels relative to flexible commercial insulation. Finally, future plans are presented of how an aerogel-based insulation may be integrated into a spacesuit for ground testing as well as for a flight configuration.