Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

1997-07-01
972388
We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

Columbus Orbital Facility Condensing Heat Exchanger and Filter Assembly

1997-07-01
972409
Space environmental control systems must control cabin temperature and humidity. This can be achieved by transferring the heat load to a circulating coolant, condensing the humidity, and separating the condensate from the air stream. In addition, environmental control systems may be required to remove particulate matter from the air stream. An assembly comprised of a filter, a condensing heat exchanger, a thermal control valve, and a liquid carryover sensor, is used to achieve all these requirements. A condensing heat exchanger and filter assembly (CHXFA) is being developed and manufactured by SECAN/AlliedSignal under a contract from Dornier Daimler-Benz as part of a European Space Agency program. The CHXFA is part of the environmental control system of the Columbus Orbital Facility (COF), the European laboratory module of the International Space Station (ISS).
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Performance Qualification Test of the ISS Water Processor Assembly (WPA) Expendables

2005-07-11
2005-01-2837
The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.
Technical Paper

Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

2005-07-11
2005-01-2863
A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gas/liquid separation and pump the liquid from 69 kPa (10 psia) at the gas/liquid interface to 124 kPa (18 psia) at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump (DSP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor[1].
Technical Paper

Mir Leak Detection Using Fluorescent Tracer Gases

1999-07-12
1999-01-1938
On June 25, 1997 a docking mishap of a Progress supply ship caused the Progress vehicle to crash into an array of solar panels and puncture the hull of the Spektr module. The puncture was small enough to allow the crew to seal off the Spektr module and repressurize the rest of the station. The Progress vehicle struck the Spektr module several times and the exact location, size, and number of punctures in the Spektr hull was unknown. Russian cosmonauts donned space suits and went inside the Spektr module to repair some electrical power cables and look for the location of the hull breach, they could not identify the exact location of the hole (or holes). The Spektr module was pressurized with Mir cabin air twice during the STS-86 fly around in an attempt to detect leakage (in the form of ice particles) from the module. Seven particles were observed within a 36 second time span, but tracking the path of the individual particles did not pinpoint a specific leak location.
Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
X