Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development Status of the Contaminant Insensitive Sublimator

2008-06-29
2008-01-2168
Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks to previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (∼3-µ6 μn) in the porous plates where ice forms and sublimates. The Contaminant Insensitive Sublimator (CIS) has been recently developed at NASA-JSC to be less sensitive to contaminants by using a larger pore size media (−350 um). Testing of a CIS Engineering Development Unit (EDU) has demonstrated good heat rejection performance. This paper describes testing that investigates different factors affecting efficient utilization of the feedwater.
Technical Paper

Development of a Contaminant Insensitive Sublimator

2006-07-17
2006-01-2217
Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators are excellent candidates for heat rejection devices on future vehicles like the Crew Exploration Vehicle (CEV), the Lunar Surface Access Module (LSAM), and future spacesuits. One of the drawbacks of previous designs was sensitivity to contamination in the feedwater. Undissolved contaminants can be removed with filters, but dissolved contaminants would be left in the pores of the porous plates in which the feedwater freezes and sublimates. These contaminants build up and clog the relatively small pores (~3–6 μm), thereby blocking the flow of the feedwater, reducing the available area for freezing and sublimation, and degrading the performance of the sublimator. For the X-38 program, a new sublimator design was developed by NASA-JSC that is less sensitive to contaminants.
X