Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Phase VI Advanced EVA Glove Development and Certification for the International Space Station

2001-07-09
2001-01-2163
Since the early 1980’s, the Shuttle Extra Vehicular Activity (EVA) glove design has evolved to meet the challenge of space based tasks. These tasks have typically been satellite retrieval and repair or EVA based flight experiments. With the start of the International Space Station (ISS) assembly, the number of EVA based missions is increasing far beyond what has been required in the past; this has commonly been referred to as the “Wall of EVA’s”. To meet this challenge, it was determined that the evolution of the current glove design would not meet future mission objectives. Instead, a revolution in glove design was needed to create a high performance tool that would effectively increase crewmember mission efficiency. The results of this effort have led to the design, certification and implementation of the Phase VI EVA glove into the Shuttle flight program.
Technical Paper

Rapid Microbial Analysis during Simulated Surface EVA at Meteor Crater: Implications for Human Exploration of the Moon and Mars

2006-07-17
2006-01-2006
Procedures for rapid microbiological analysis were performed during simulated surface extra-vehicular activity (EVA) at Meteor Crater, Arizona. The fully suited operator swabbed rock (‘unknown’ sample), spacesuit glove (contamination control) and air (negative control). Each swab sample was analyzed for lipopolysaccharide (LPS) and β-1, 3-glucan within 10 minutes by the handheld LOCAD PTS instrument, scheduled for flight to ISS on space shuttle STS-116. This simulated a rapid and preliminary ‘life detection’ test (with contamination control) that a human could perform on Mars. Eight techniques were also evaluated for their ability to clean and remove LPS and β-1, 3-glucan from five surface materials of the EVA Mobility Unit (EMU). While chemical/mechanical techniques were effective at cleaning smooth surfaces (e.g. RTV silicon), they were less so with porous fabrics (e.g. TMG gauntlet).
Technical Paper

Human and Robotic Enabling Performance System Development and Testing

2005-07-11
2005-01-2969
With a renewed focus on manned exploration, NASA is beginning to prepare for the challenges that lie ahead. Future manned missions will require a symbiosis of human and robotic infrastructure. As a step towards understanding the roles of humans and robots in future planetary exploration, NASA headquarters funded ILC Dover and the University of Maryland to perform research in the area of human and robotic interfaces. The research focused on development and testing of communication components, robotic command and control interfaces, electronic displays, EVA navigation software and hardware, and EVA lighting. The funded research was a 12-month effort culminating in a field test with NASA personnel.
X