Refine Your Search

Topic

Author

Search Results

Journal Article

Ignition Systems for Spray-Guided Stratified Combustion

2010-04-12
2010-01-0598
The success of stratified combustion is strongly determined by the injection and ignition system used. A large temporal and spatial variation of the main parameters - mixture composition and charge motion - in the vicinity of the spark location are driving the demands for significantly improved ignition systems. Besides the requirements for conventional homogeneous combustion systems higher ignition energy and breakdown voltage capability is needed. The spark location or spark plug gap itself has to be open and well accessible for the mixture to allow a successful flame kernel formation and growth into the stratified mixture regime, while being insensitive to potential interaction with liquid fuel droplets or even fuel film. For this purpose several different ignition concepts are currently being developed. The present article will give an ignition system overview for stratified combustion within Delphi Powertrain Systems.
Technical Paper

Failure Prediction and Design Optimization of Exhaust Manifold based on CFD and FEM Analysis

2020-04-14
2020-01-1166
A thermo-mechanical fatigue analysis was conducted based on a coupled Finite Element Analysis (FEA) - Computational Fluid Dynamics (CFD) method on the crack failure of the exhaust manifold for an inline 4-cylinder turbo-charged diesel engine under the durability test. In the this analysis, the temperature-dependent material properties were obtained from measurements and the model was calibrated with comparison of the predicted exhaust manifold temperatures with the on-engine measurements under the same engine load condition. Temperature and stress/strain distributions in the exhaust manifold were predicted with the calibrated model. Analysis results showed that the cracks took place at locations with high plastic deformations, suggesting that the cause of the failure be thermo-mechanical fatigue (TMF). Using the equivalent plastic strain (PEEQ) as the indicator for thermal mechanical fatigue, three exhaust manifold design revisions were carried out by CAE analysis.
Journal Article

Model-Based Development of AUTOSAR-Compliant Applications: Exterior Lights Module Case Study

2008-04-14
2008-01-0221
The complexity of automotive software and the needs for shorter development time and software portability require the development of new approaches and standards for software architectures. The AUTOSAR project is one of the most comprehensive and promising solutions for defining a methodology supporting a function-driven development process. Furthermore, it manifests itself as a standard for expressing compatible software interfaces at the Application Layer. This paper discusses the implementation of AUTOSAR requirements for the component structure, as well as interfaces to the Application Layer in a model-based development environment. The paper outlines the major AUTOSAR requirements for software components, provides examples of their implementation in a Simulink/Stateflow model, and describes the modelbased implementation of an operating system for running AUTOSAR software executables (“runnables”).
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Development and Validation of a Forklift Truck Powertrain Simulation

2013-04-08
2013-01-0817
Fuel economy has become an important consideration in forklift truck design, particularly in Europe. A simulation of the fuel consumption and performance of a forklift truck has been developed, validated and subsequently used to determine the energy consumed by individual powertrain components during drive cycles. The truck used in this study has a rated lifting capacity of 2500kg, and is powered by a 2.6 litre naturally aspirated diesel engine with a fuel pump containing a mechanical variable-speed governor. The drivetrain consisted of a torque convertor, hydraulic clutch and single speed transmission. AVL Cruise was used to simulate the vehicle powertrain, with coupled Mathworks Simulink models used to simulate the hydraulic and control systems and governor. The vehicle has been simulated on several performance and fuel consumption drive cycles with the main focus being the VDI 2198 fuel consumption drive cycle.
Technical Paper

Fuel Injection Strategy for Reducing NOx Emissions from Heavy-Duty Diesel Engines Fueled with DME

2006-10-16
2006-01-3324
A new fuel injection strategy is proposed for DME engines. Under this strategy, a pre-injection up to 40% demand is conducted after intake valves closing. Due to high volatility of DME, a lean homogeneous mixture can be formed during the compression stroke. Near TDC, a pilot injection is conducted. Combined fuel mass for the pre-injection and pilot injection is under the lean combustion limit of DME. Thus, the mixture is enriched and combustion can take place only in the neighborhood of sprays of the pilot injection. The main injection is conducted after TDC. Because only about half of the demand needs to be injected and DME evaporates almost immediately, combustion duration for the main injection plus the unburnt fuel in the cylinder should not be long because a large portion of the fuel has been premixed with air. With a high EGR rate and proper timing for the main injection, low temperature combustion could be realized.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

Fuel Chemistry Impacts on Gasoline HCCI Combustion with Negative Valve Overlap and Direct Injection

2007-10-29
2007-01-4105
Homogeneous Charge Compression Ignition (HCCI) combustion has the potential to produce low NOx and low particulate matter (PM) emissions while providing high efficiency. In HCCI combustion, the start of auto-ignition of premixed fuel and air depends on temperature, pressure, concentration history during the compression stroke, and the unique reaction kinetics of the fuel/air mixture. For these reasons, the choice of fuel has a significant impact on both engine design and control strategies. In this paper, ten (10) gasoline-like testing fuels, statistically representative of blends of four blending streams that spanned the ranges of selected fuel properties, were tested in a single cylinder engine equipped with a hydraulic variable valve train (VVT) and gasoline direct injection (GDI) system.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Rapid Algorithm Development Tools Applied to Engine Management Systems

1998-02-23
980799
Intense competition in the automotive industry requires continuous reduction in innovation cycle time, even as corporations are downsizing and system complexity is increasing. Subsequently, the application of recently introduced Rapid Algorithm Development (RAD) tools has facilitated significant advances in the development of embedded control systems. The RAD steps include system modeling, control algorithm design, simulation analysis, automated calibration design, and vehicle implementation through automatic code generation. The application of RAD tools and the associated benefits are described, specifically in the context of Engine Management Systems (EMS). Such benefits include significant reductions in development cycle time, open architecture, automated calibration, and information reuse.
Technical Paper

Emission Formation Mechanisms in a Two-Stroke Direct-Injection Engine

1998-10-19
982697
Engine tests were conducted to study the effect of fuel-air mixture preparation on the combustion and emission performance of a two-stroke direct-injection engine. The in-cylinder mixture distribution was altered by changing the injection system, injection timing, and by substituting the air in an air-assisted injector with nitrogen. Two injection systems which produce significantly different mixtures were investigated; an air-assisted injector with a highly atomized spray, and a single-fluid high pressure-swirl injector with a dense penetrating spray. The engine was operated at overall A/F ratios of 30:1, where stratification was necessary to ensure stable combustion; and at 20:1 and 15:1 where it was possible to operate in a nearly homogeneous mode. Moderate engine speeds and loads were investigated. The effects of the burning-zone A/F ratio were isolated by using nitrogen as the working fluid in the air-assist injector.
Technical Paper

Comparison between FR-4 and Ceramic Substrate

2008-10-07
2008-36-0361
This paper investigates the application of thick film hybrid circuit technology on ceramic substrate in comparison to the main stream substrate FR-4 (Flame Retardant 4) for PCB implementation. The study is based on computer models for these very substrates in order to simulate the propagation of heat through convection and conduction within the material boundaries. In order to simulate electronic components surface mounted, different heat sources are randomly arranged on physical contact to the surface of the material under investigation. The results emphasize and discern the usage of both substrates and its most suitable environment verifying the application towards vehicular integration. Future study may include experimental analysis for simulated data verification and validation of thick film hybrid circuit technology for the automotive industry.
Technical Paper

A Thermal Energy Operated Heating/Cooling System for Buses

2010-04-12
2010-01-0804
The passenger cabin heating and cooling has a considerable impact on the fuel economy for buses, especially during the waiting period. This problem becomes more significant for the hybrid buses for which the impact of the auxiliary load on the fuel economy is almost twice that on the conventional buses. A second-law analysis conducted in this study indicates that a heat-driven AC system has higher energy utilization efficiency than the conventional AC system. On the basis of this analysis, a concept waste-heat-driven absorptive aqua-ammonia heat pump system is proposed and analyzed. Results of the analysis show that the heat-driven system can reduce the engine auxiliary load significantly because it eliminates the conventional AC compressor. In the AC mode, its energy utilization efficiency can be up to 50%. In the heating mode, the effective efficiency for heating can be up to 100%.
Technical Paper

Achieving Breakthrough on Manufacturing Floor through Project-Based Organization

2009-10-06
2009-36-0333
Many companies around the world have adopted the lean thinking as their strategy to operate, in a global market where changes happen all the time. One foundation for the success of lean manufacturing appliance is the continuous improvement approach which has been considered even on company statements, or it can be also considered as part of the genetic code of any enterprise. However, if in one side the continuous improvement thinking, set people mind to look for opportunities of improvement all the time, on other hand these improvements are incremental and they do not have significant impact on company performance on both short-term and medium-term and sometimes, the activities performed by the employees are not sustainable due to the lack of structure to manage and follow up these activities.
Technical Paper

Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Rejection

2009-10-06
2009-01-2913
The fuel saving benefit is analyzed for a class-8 truck diesel engine equipped with a WHR system, which recovers the waste heat from the EGR. With this EGR-WHR system, the composite fuel savings over the ESC 13-mode test is up to 5%. The fuel economy benefit can be further improved if the charge air cooling is also integrated in the Rankine cycle loop. The influence of working fluid properties on the WHR efficiency is studied by operating the Rankine cycle with two different working fluids, R245fa and ethanol. The two working fluids are compared in the temperature-entropy and enthalpy-entropy diagrams for both subcritical and supercritical cycles. For R245fa, the subcritical cycle shows advantages over the supercritical cycle. For ethanol, the supercritical cycle has better performance than the subcritical cycle. The comparison indicates that ethanol can be an alternative for R245fa.
Technical Paper

CAE Process for Developing Cylinder Head Design Including Statistical Correlation and Shape Optimization

2010-04-12
2010-01-0494
Design of cylinder heads involves complex constraints that must satisfy thermal, strength, performance, and manufacturing requirements which present a great challenge for successful development. During development of a new highly loaded cylinder head, CAE methods predicted unacceptable fatigue safety factors for the initial prototype design. Hydropulsator component testing was undertaken and the results were correlated with the analysis predictions using a statistical method to calculate failure probability. Shape optimization was undertaken to improve high cycle fatigue safety in vulnerable regions of the cylinder head water jacket for the subsequent design release. The optimization process provided more efficient design guidance than previously discovered through a traditional iterative approach. Follow-on investigations examined other shape optimization software for fatigue improvement in the cylinder head.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

FMERA - Failure Modes, Effects, and (Financial) Risk Analysis

2001-03-05
2001-01-0375
Continuous Improvement activities are often based on a list of top concerns, such as highest RPN (Risk Priority Number) on the PFMEA (Process Failure Modes and Effects Analysis), warranty items, or scrap rates. But a company is in business to make a profit for its stockholders. Therefore, money should be considered, rather than just technical engineering tools and RPNs. Current PFMEA methodology (See references 1 and 2) focuses on delivering quality parts to the customer. The financial impact of various potential process problems is not considered directly. A new and extended technique called FMERA (pronounced Fuh-MAIR-uh) can identify and prioritize the process part of potential problems that have the most financial impact on an operation. Alternatives can be evaluated to maximize the financial benefits. FMERA is a method for getting the voice of the stockholder into process decisions.
Technical Paper

A Model-Based Brake Pressure Estimation Strategy for Traction Control System

2001-03-05
2001-01-0595
This paper presents a brake pressure estimation algorithm for Delphi Traction Control Systems (TCS). A control oriented lumped parameter model of a brake control system is developed using Matlab/Simulink. The model is derived based on a typical brake system and is generic to other types of brake control hardware systems. For application purposes, the model is simplified to capture the dominant dynamic brake pressure response. Vehicle experimental data collected under various scenarios are used to validate the algorithm. Simulation results show that the algorithm gives accurate pressure estimation. In addition, the calibration procedure is greatly simplified
Technical Paper

Characterization of the Dynamic Response of a Cylinder Deactivation Valvetrain System

2001-03-05
2001-01-0669
This paper presents a theoretical and experimental study of a cylinder deactivation valvetrain system for the integration into an Engine Management System (EMS). A control-oriented lumped parameter model of the deactivation valvetrain system is developed and implemented using Matlab/Simulink, and validated by experimental data. Through simulation and experimental data analysis, the effect of operating conditions on the dynamic response is captured and characterized, over a wide range of operating conditions. The algorithm provides a basis for the calibration of the deactivation hardware. The generic characterization of the dynamic response can simplify the calibration parameters for the implementation in engine management systems.
X