Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
Journal Article

Development of a Transient Thermal Analysis Model for Engine Mounts

2016-04-05
2016-01-0192
Engine mount is one of the temperature sensitive components in the vehicle under-hood. Due to increasing requirements for improved fuel economy, the under-hood thermal management has become very challenging in recent years. In order to study the effects of material thermal degradation on engine mount performance and durability; it is required to estimate the temperature of engine mount rubber during various driving conditions. The effect of temperature on physical properties of natural rubber can then be evaluated and the life of engine mount can be estimated. In this paper, a bench test is conducted where the engine mount is exposed to a step change in the environment around it, and the temperature of the rubber section is recorded at several points till a steady state temperature is reached. A time response curve is generated, from which a time constant is determined.
Technical Paper

A Comprehensive Approach for Estimation of Automotive Component Life due to Thermal Effects

2018-05-30
2018-37-0019
Due to stringent environmental requirements, the vehicle under-hood and underbody temperatures have been steadily increasing. The increased temperatures affect components life and therefore, more thermal protection measures may be necessary. In this paper, we present an algorithm for estimation of automotive component life due to thermal effects through the vehicle life. Traditional approaches consider only the maximum temperature that a component will experience during severe driving maneuvers. However, that approach does not consider the time duration or frequency of exposure to temperature. We have envisioned a more realistic and science based approach to estimate component life based on vehicle duty cycles, component temperature profile, frequency and characteristics of material thermal degradation. In the proposed algorithm, a transient thermal analysis model provides the exhaust gas and exhaust surface temperatures for all exhaust system segments, and for any driving scenario.
Technical Paper

Development of a Robust Thermal Management System for Lead-Acid Batteries

2021-04-06
2021-01-0232
Lead-acid batteries have been widely used in automotive applications. Extending battery life and reducing battery warranty requires reducing any deteriorating to battery internals and battery electrolyte. At the end of battery life, it is required to maintain at least 50% of its initial capacity [1,2]. The rate of battery degradation increases at high battery temperatures due to increased rate of electrochemical reactions and potential loss of battery electrolyte. For Lead-Acid batteries, an electrolyte solution consists of diluted sulfuric acid. Battery electrolyte/water loss affects battery performance. Water loss is caused by high internal battery temperature and gassing off due to battery electrochemistry. High temperatures, high charging rates, and over charging can cause a loss of electrolyte in non-sealed batteries. In sealed batteries, the same factors will cause an increase in temperature and pressure which can eventually result in the release of hydrogen and oxygen gases.
Technical Paper

Estimates of the Convective Heat-Transfer Coefficients for Under-Hood and Under-Body Components

2019-04-02
2019-01-0149
In this paper we investigate the application of time constant to estimate the external heat transfer coefficient (h) around specific vehicle components. Using this approach, a test sample in the form of a steel plate is placed around the component of interest. A step change is applied to air temperature surrounding the sample. The response of the sample temperature can be analyzed and the heat transfer coefficient can therefore be calculated. Several test samples were installed at several locations in the vehicle under-hood and underbody. A series of vehicle tests were designed to measure the time constant around each component at various vehicle speeds. A correlation between estimated heat transfer coefficients and vehicle speed was generated. The developed correlations and the measured component ambient temperatures can be readily used as input for thermal simulation tools. This approach can be very helpful whenever CFD resources may not be available.
X