Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Initial Assessment of the Next-Generation USA Frontal NCAP: Fidelity of Various Risk Curves for Estimating Field Injury Rates of Belted Drivers

2009-04-20
2009-01-0386
Various frontal impact risk curves were assessed for the next-generation USA New Car Assessment Program (NCAP). Specifically, the “NCAP risk curves” — those chosen by the government for the 2011 model year NCAP — as well as other published risk curves were used to estimate theoretically the injury rates of belted drivers in real-world frontal crashes. Two perspectives were considered: (1) a “point” estimate of NCAP-type events from NCAP fleet tests, and (2) an “aggregate” estimate of 0 ≤ ΔV ≤ 56 km/h crashes from a modeled theoretical vehicle whose NCAP performance approximated the average of the studied fleet. Four body regions were considered: head, neck, chest, and knee-thigh-hip complex (KTH). The curve-based injury rates for each body region were compared with those of real-world frontal crashes involving properly-belted adult drivers in airbag-equipped light passenger vehicles. The assessment yielded mixed results.
Technical Paper

Improving Robustness Assessment Quality Via Response Decomposition

2006-04-03
2006-01-0760
Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without large, recurring, computation costs. However, due to the highly nonlinear and non-convex nature of occupant injury responses, it is difficult to generate high quality response surface models from them. In this paper, we apply a cross validation technique to estimate the accuracy of response surface models, particularly in the context of robustness assessment. We then decompose selected occupant injury responses into more fundamental signals before fitting surfaces to improve the predictivity of the response surface models. Real-world case studies on an occupant restraint system robust design problem are used to demonstrate the methodology.
Technical Paper

Experience With Response Surface Methods for Occupant Restraint System Design

2005-04-11
2005-01-1306
Response surface methodologies (RSMs) have been proposed as surrogate models in vehicle design processes to gain insight and improve turnaround time for optimization and robust design. However, when studying the vehicle occupants during crash events, nonlinearities in responses, coupled with the relatively high dimensionality of vehicle design, can yield misleading results with little or no warning from the response surface algorithms. To ensure the accuracy and reliability of RSMs, fast and dependable error estimation procedures are essential for enlightening how well a response surface predicts highly nonlinear phenomena, given a limited number of model simulations. Such error estimation methods are also useful for providing guidance on how many simulation runs are needed for reliable RSM construction. In this paper, a fast cross validation error estimate procedure is first presented, applied to the multivariable adaptive regression spline (MARS) response surface method.
X