Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

NASA System-Level Design, Analysis and Simulation Tools Research on NextGen

2011-10-18
2011-01-2716
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
Technical Paper

Compressing Aviation Data in XML Format

2003-09-08
2003-01-3011
Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. Manual discovery of optimal setting can require an engineer to experiment for weeks.
Technical Paper

Comparison of Equivalent System Mass (ESM) of Yeast and Flat Bread Systems

2003-07-07
2003-01-2618
The Equivalent System Mass (ESM) metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The food system of a Mars mission may encompass a large percentage of total mission ESM, and decreasing this ESM would be beneficial. Yeast breads were made using three methods (hand & oven, bread machine, mixer with dough hook attachment & oven). Flat breads were made using four methods (hand & oven, hand & griddle, mixer with dough hook attachment & oven, mixer with dough hook attachment & griddle). Two formulations were used for each bread system (scratch ingredients, commercial mix). ESM was calculated for each of these scenarios. The objective of this study was to compare the ESM of yeast and flat bread production for a Martian surface outpost. Method (equipment) for both types of bread production was demonstrated to be the most significant influence of ESM when one equipment use was assumed.
Technical Paper

A Testbed for the Mars Returned Sample Handling Facility

2001-07-09
2001-01-2412
Samples of Mars surface material will return to Earth in 2014. Prior to curation and distribution to the scientific community the returned samples will be isolated in a special facility until their biological safety has been assessed following protocols established by NASA’s Planetary Protection Office. The primary requirements for the pre-release handling of the Martian samples include protecting the samples from the Earth and protecting the Earth from the sample. A testbed will be established to support the design of such a facility and to test the planetary protection protocols. One design option that is being compared to the conventional Biological Safety Level 4 facility is a double walled differential pressure chamber with airlocks and automated equipment for analyzing samples and transferring them from one instrument to another.
Technical Paper

The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

2002-07-15
2002-01-2300
Although designed to remove organic contaminants from a variety of wastewater streams, the planned U.S. and present Russian-provided water processing systems on board the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: Closed Hygiene and Potable Loop Test Results and Lesson Learned

1992-07-01
921117
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.
Technical Paper

Space Shuttle Crew Compartment Debris/Contamination

1992-07-01
921345
Debris in the Orbiter crew compartment of early Shuttle missions created crew health concerns and physiological discomfort, and was the cause of some equipment malfunctions. Debris from Orbiters during flight and processing was analyzed, quantized, and evaluated to determine its source. Records were kept on the amount of debris vacuumed by the crew during on-orbit cleaning and the amount found on air-cooled avionics boxes during ground turnaround. After ground turnaround operations at Kennedy Space Center and Palmdale were reviewed from a facility, materials use, and materials control standpoint, the following remedial steps were taken.
Technical Paper

Plant Growth and Plant Environmental Monitoring Equipment on the Mir Space Station: Experience and Data from the Greenhouse II Experiment

1996-07-01
961364
A three country effort (U.S., Russia, and Bulgaria) has upgraded the plant growth facilities on the Mir Space Station and used the new facility to grow wheat for 90 days. The Svet plant-growth facility was reactivated and used in an initial experiment as part of the Shuttle/Mir program, August to November, 1995. The Svet system, used first to grow cabbage and radish during a 1990 experiment, was augmented by the addition of a U.S. developed Gas Exchange Measurement System (GEMS) that measures a range of environmental parameters plus transpiration, photosynthesis, and possibly respiration. Environmental parameters include cabin, chamber, root-zones, and leaf temperatures. Light levels, relative humidity, oxygen, and atmospheric pressure are also measured. High-accuracy water-vapor and carbon-dioxide concentrations and differences are measured using specially developed IRGA systems.
Technical Paper

Growth of Super-Dwarf Wheat on the Russian Space Station MIR

1996-07-01
961392
During 1995, we tested instruments and attempted a seed-to-seed experiment with Super-Dwarf wheat in the Russian Space Station Mir. Utah instrumentation included four IR gas analyzers (CO2 and H2O vapor, calculate photosynthesis, respiration, and transpiration) and sensors for air and leaf (IR) temperatures, O2, pressure, and substrate moisture (16 probes). Shortly after planting on August 14, three of six fluorescent lamp sets failed; another failed later. Plastic bags, necessary to measure gas exchange, were removed. Hence, gases were measured only in the cabin atmosphere. Other failures led to manual watering, control of lights, and data transmission. The 57 plants were sampled five times plus final harvest at 90 d. Samples and some equipment (including hard drives) were returned to earth on STS-74 (Nov. 20). Plants were disoriented and completely vegetative. Maintaining substrate moisture was challenging, but the moisture probes functioned well.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Developing IVHM Requirements for Aerospace Systems

2013-09-17
2013-01-2333
The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a “real-world” example related to designing a landing gear system.
Technical Paper

Optimization of Chamber-Grown Crops in Menu Planning

1998-07-13
981559
NASA-JSC is evaluating planetary mission scenarios where plants will provide the majority of the diet for the crew. The requirements of both plants and crew diet need to be integrated in the development of the final food system. Plant growth has limitations in type and quantity of crops to be produced while diets must meet palatability and nutritional requirements as well as limited processing labor, equipment and power. A plan is presented for the development of a food system based heavily on grown crops. Although the steps taken in the development are applicable to the design of any long duration flight food system. The process begins with the development of a food list, followed by preliminary menu design, nutritional analysis and finally menu testing.
Technical Paper

Enabling Strategic Flight Deck Route Re-Planning Within A Modified ATC Environment: The Display of 4-D Intent Information on a CSD

2000-10-10
2000-01-5574
The concept of free flight introduces many challenges for both air and ground aviation operations. Of considerable concern has been the issue of moving from centralized control and responsibility to decentralized control and distributed responsibility for aircraft separation. Data from capacity studies suggest that we will reach our capacity limits with ATC centralized control within the next 2 decades, if not sooner. Based on these predictions, research on distributed air-ground concepts was under taken by NASA Advanced Air Transportation Technologies Program to identify and develop air-ground concepts in support of free-flight operations. This paper will present the results of a full mission air-ground simulation conducted in the NASA Crew Vehicle Systems Research Facility. The purpose of the study was to evaluate the effect of advanced displays with “intent” (4-D flight plans) information on flight crew and ATC performance during limited free-flight operations.
Technical Paper

A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

1999-07-12
1999-01-2175
Ames Research Center’s Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.
Technical Paper

NASA's Aviation System Monitoring and Modeling Project

2003-09-08
2003-01-2975
Within NASA's Aviation Safety Program, the Aviation System Monitoring and Modeling (ASMM) Project addresses the need to provide decision makers with the tools to identify and evaluate predisposing conditions that could lead to accidents. This Project is developing a set of automated tools to facilitate efficient, comprehensive, and accurate analyses of data collected in large, heterogeneous databases throughout the National Aviation System. This report is a brief overview of the ASMM Project as an introduction to the rest of the presentations in this session on one of its key elements---the Performance Data Analysis and Reporting System (PDARS).
X