Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Flammability of Human Hair in Exploration Atmospheres

2009-07-12
2009-01-2512
To investigate the flammability of human hair, a series of normal and microgravity flame spread tests over human hair were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows (∼20 cm/s). The tunnel atmosphere pressure and oxygen concentration was varied over the range of anticipated exploration atmospheres (21–34% O2 in N2, 8–14.7 psia). While hair is marginally flammable in air, spreading upward but not downward, it burns extremely well at or above 30% O2 in any direction or g-level. The spread is characterized by a quick spread over the surface ‘nap’ or ‘frizz’, followed by continued bulk burning. Two hair ‘styles’ were tested — short hair and long hair — and style does not seem to affect initial nap spread significantly. Opposed and concurrent nap spread rates are similar in 0g under comparable conditions. Oxygen concentration has a strong effect on flame spread rates.
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

1997-07-01
972388
We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Microgravity Flame Spread over Non-Charring Materials in Exploration Atmospheres: Pressure, Oxygen, and Velocity Effects on Concurrent Flame Spread

2009-07-12
2009-01-2489
The objective of this work is to determine the dependence of microgravity flame spread on ambient pressure, oxygen concentration, and velocity typical in exploration spacecraft and habitats. Since it is impractical to test a wide range of materials, these characteristics are being determined for major classes of materials. In the current work, a non-charring thin fuel (25-micron thick Shinkolite™ast;) was tested in microgravity to compare with previous results with a charring thin fuel. Microgravity concurrent flame spread tests were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows (7–31 cm/s). The tunnel atmosphere pressure and oxygen concentration was varied over a wide range (21–85% O2, 5–16 psia). Flame spread rate was measured to develop correlations that capture the effects of flow velocity, oxygen concentration, and pressure on the spread rate. The non-charring fuel exhibited a linear dependence on flow, similar to the charring fuel.
Technical Paper

Development of a Direct Drive Hall Effect Thruster System

2002-10-29
2002-01-3212
A three-year program to develop a Direct Drive Hall Effect Thruster (D2HET) system began 15 months ago as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems. The D2HET will employ solar arrays that operate at voltages greater than 300V, and will be an enabling technology for affordable planetary exploration. It will also be a stepping-stone in the production of the next generation of power systems for Earth orbiting satellites. This paper provides a general overview of the program and reports the first year's findings from both theoretical and experimental components of the program.
Technical Paper

Development of the Flame Detector for Space Station Freedom

1993-07-01
932106
One of the primary safety concerns for Space Station Freedom pressurized modules is fire. Some Freedom modules are unattended for long periods of time. In other cases, enclosed, pressurized volumes are not open to crew monitoring. As a result, a fire detection system is required to continuously monitor all modules for combustion. This paper briefly reviews the overall design for the Freedom fire detection system, and the design of the two basic types of detectors: smoke and flame. The smoke detectors monitor particulates in small open areas, stand-offs, end-cones, and racks. The flame detectors survey open areas for radiation at wavelengths and intensities characteristic of combustion. Responses from detectors are evaluated by Freedom's data management system to determine the presence of combustion and to recommend appropriate action.
Technical Paper

Spacelab Carrier Complement Thermal Design and Performance

1992-07-01
921278
Spacelab mission thermal integration is one of many activities performed at the NASA Marshall Space Flight Center (MSFC). The Spacelab carrier system has been expanded from the original module/pallet system. Thermodynamics and heat transfer as well as fluid mechanics and fluid dynamics are the support areas discussed here. This support incorporates preflight mission analysis in conjunction with real time mission support and postflight mission analysis. This paper summarizes these activities for the Spacelab carrier complement, citing some of the more challenging thermal control designs for which the Center is and has been responsible. Technology advancements, coupled with the ever increasing needs of the payload community and the desire for flexibility to manifest several distinct payload elements on a single mission, has aided in the evolution of a more diverse Spacelab carrier complement.
Technical Paper

Hubble Space Telescope Nickel-Hydrogen Battery and Cell Testing - An Update

1992-08-03
929089
Nickel-hydrogen (Ni-H2) technology has only recently been utilized in low earth orbit (LEO) applications. The Hubble Space Telescope (HST) program, over the past five years, played a key role in developing this application. The HST not only became the first reported, nonexperimental program to fly Ni-H2 batteries in a LEO application, but funded numerous, ongoing tests that served to validate this usage. The Marshall Space Flight Center (MSFC) has been testing HST Ni-H2 batteries and cells for over three years. The major tests include a 6-battery system (SBS) test and a single 22-cell battery (FSB) test. The SBS test has been operating for 34 months and completed approximately 15,200 cycles. The performance of the cells and batteries in this test is nominal. Currently, the batteries are operating at an average end-of-charge (EOC) pressure that indicates an average capacity of approximately 79 ampere-hours (Ah).
Technical Paper

A Description and Comparison of U.S. and Russian Urine Processing Hardware for the International Space Station

1994-06-01
941251
The Russian space program has maintained crews on long duration space flights nearly continuously over the past two decades. As a result, a strong emphasis has been placed on the development of regenerative life support systems. One of these systems is a urine processor which has been operating on-orbit since 1990. The U. S has also been developing urine processing systems to reclaim water from urine over the past twenty years. This paper will describe the two different technologies used for urine processing for long-term human presence in space and will compare the operating characteristics of the two systems.
Technical Paper

A Study on the Role of Human Testing of Life Support Systems

1996-07-01
961474
The appropriate role of human testing in life support systems design has been a key concern for human spacecraft development. This discussion intensified over the past one and a half years as the International Space Station (ISS) evaluated the risk associated with the baseline program while conducting cost and schedule convergence activities. The activity was carried from the traditional top-level discussion to evaluation of the specific Space Station Life Support concerns associated with human interaction, weighed against cost impacts. This paper details the results of this activity, providing the rationale for the present ISS approach.
Technical Paper

A Discussion of Issues Affecting the Transition of NASA’s Standard Offgassing Test Method to an International Test Method

1999-07-12
1999-01-2054
The toxicity test method utilized by The National Aeronautics and Space Administration (NASA) is being modified to create an International Standard. The method, NHB 8060.1 C, Test 7, is utilized to determine the identity and quantity of offgassed products from materials and hardware. This paper focuses on the resolution of technical issues faced during its transition from a US specific document to an International Standard. NASA, the European Space Agency (ESA) and the National Space Development Agency of Japan (NASDA) have been very active in bringing ISO 14624-3 through several revisions to its current form. It is anticipated that the document could be an international standard by the end of 1999, with the full support of NASA, ESA, NASDA, and the other national programs represented in Working Group 1.
Technical Paper

Mir Leak Detection Using Fluorescent Tracer Gases

1999-07-12
1999-01-1938
On June 25, 1997 a docking mishap of a Progress supply ship caused the Progress vehicle to crash into an array of solar panels and puncture the hull of the Spektr module. The puncture was small enough to allow the crew to seal off the Spektr module and repressurize the rest of the station. The Progress vehicle struck the Spektr module several times and the exact location, size, and number of punctures in the Spektr hull was unknown. Russian cosmonauts donned space suits and went inside the Spektr module to repair some electrical power cables and look for the location of the hull breach, they could not identify the exact location of the hole (or holes). The Spektr module was pressurized with Mir cabin air twice during the STS-86 fly around in an attempt to detect leakage (in the form of ice particles) from the module. Seven particles were observed within a 36 second time span, but tracking the path of the individual particles did not pinpoint a specific leak location.
Technical Paper

Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing

1999-07-12
1999-01-1954
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Development and life testing over the past several years have brought to the forefront problems and solutions for the VCD technology. Testing between 1992 and 1998 has been instrumental in developing estimates of hardware life and reliability. It has also helped improve the hardware design in ways that either correct existing problems or enhance the existing design of the hardware. The testing has increased the confidence in the VCD technology and reduced technical and programmatic risks. This paper summarizes the test results and changes that have been made to the VCD design.
Technical Paper

ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project - 2006 Update

2006-07-17
2006-01-2161
The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered.
Technical Paper

The Continuing Evolution of the C-130 Environmental Control System

1999-07-12
1999-01-2163
The vast array of C-130 applications demand a variety of air conditioning solutions to meet the specific needs of each variant and its user. Existing C-130′s are often reconfigured for special use such as airborne early warning and control (AEW&C), electronic surveillance, or armed reconnaissance, or just upgraded to current flight standards where new equipment is added to the aircraft that significantly increases the heat load on the air conditioning system. These factors dictate the need for high-, middle-, and low-end solutions to deliver the increased cooling capacity required at a price each user can afford. This paper will recap the evolution of the C-130 environmental control system (ECS) to date, summarize current improvement efforts, and suggest future ECS developments.
Journal Article

Microgravity Flame Spread in Exploration Atmospheres: Pressure, Oxygen, and Velocity Effects on Opposed and Concurrent Flame Spread

2008-06-29
2008-01-2055
Microgravity tests of flammability and flame spread were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows. Three thin fuels were tested for flammability (Ultem 1000®, 10 mil film, Nomex HT90-40, and Mylar G® and one fuel for flame spread testing (Kimwipes®). The 1g Upward Limiting Oyxgen Index (ULOI) and 1g Maximum Oxygen Concentration (MOC) are found to be greater than those in 0g, by up to 4% oxygen mole fraction, meaning that the fuels burned in 0g at lower oxygen concentrations than they did using the NASA Standard 6001 Test 1 protocol. Flame spread tests with Kimwipes® were used to develop correlations that capture the effects of flow velocity, oxygen concentration, and pressure on flame spread rate. These correlations were used to determine that over virtually the entire range of spacecraft atmospheres and flow conditions, the opposed spread is faster, especially for normoxic atmospheres.
X