Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of Optical Trace Gas Monitoring Technology for NASA Human Space Flight

Investigators from three institutions have partnered in a Rapid Technology Development Team whose goal will be the deployment of laser-based sensors for air-constituent measurements on board spacecrafts. The sensors will eventually be based on Type II Interband Cascade (IC) lasers being developed at the Jet Propulsion Laboratory. These lasers will be used in implementations of both photo acoustic spectroscopy based on the use of quartz tuning fork oscillators as a resonant acoustic sensor (QE-PAS) and cavity ring down spectroscopy (CRDS). In the first year of the program, work at Rice and George Washington Universities has focused on the development of both QEPAS and CRDS sensors for ammonia using near infrared lasers. Simultaneously, the JPL portion of the team has fabricated both Fabry Perot and distributed feedback lasers in the mid infrared that can be used for formaldehyde detection.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

Advanced Fiber-Optic Monitoring System for Space-flight Applications

Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration's Marshall Space Flight Center (NASA MSFC) are developing an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Journal Article

Advanced Quartz-Enhanced Photoacoustic Trace Gas Sensor for Early Fire Detection

A spectroscopic trace gas sensor using a distributed feedback diode laser at λ=1.53 µm and based on quartz enhanced photoacoustic spectroscopy technique is described. The sensor is capable of quasi-simultaneous quantification of trace ammonia, hydrogen cyanide, and acetylene (NH3, HCN, and C2H2, respectively) concentrations at ∼100 ppbv levels with a 4s integration time. The sensor design, responsivity, noise, and cross-talk characteristics are reported.