Refine Your Search

Topic

Search Results

Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
Technical Paper

Mir Leak Detection Using Fluorescent Tracer Gases

1999-07-12
1999-01-1938
On June 25, 1997 a docking mishap of a Progress supply ship caused the Progress vehicle to crash into an array of solar panels and puncture the hull of the Spektr module. The puncture was small enough to allow the crew to seal off the Spektr module and repressurize the rest of the station. The Progress vehicle struck the Spektr module several times and the exact location, size, and number of punctures in the Spektr hull was unknown. Russian cosmonauts donned space suits and went inside the Spektr module to repair some electrical power cables and look for the location of the hull breach, they could not identify the exact location of the hole (or holes). The Spektr module was pressurized with Mir cabin air twice during the STS-86 fly around in an attempt to detect leakage (in the form of ice particles) from the module. Seven particles were observed within a 36 second time span, but tracking the path of the individual particles did not pinpoint a specific leak location.
Technical Paper

Demonstration of Oxygen Production on the Moon and Mars

1997-07-01
972498
Scientists and engineers at NASA are currently developing flight instruments which will demonstrate oxygen production on the Moon and Mars. REGA will extract oxygen from the lunar regolith, measure implanted solar wind and indigenous gases, and monitor the lunar atmosphere. MIP will demonstrate oxygen production on Mars, along with key supporting technologies including filtration, atmospheric acquisition and compression, thermal management, solar cell performance, and dust removal.
Technical Paper

Investigation of Mars In-Situ Propellant Production

1997-07-01
972496
In-situ production of oxygen and methane for utilization as a return propellant from Mars for both sample-return and manned missions is currently being developed by NASA in cooperation with major aerospace companies. Various technologies are being evaluated using computer modeling and analysis at the system level. An integrated system that processes the carbon dioxide in the Mars atmosphere to produce liquid propellants has been analyzed. The system is based on the Sabatier reaction that utilizes carbon dioxide and hydrogen to produce methane and water. The water is then electrolyzed to produce hydrogen and oxygen. While the hydrogen is recycled, the propellant gases are liquefied and stored for later use. The process model considers the surface conditions on Mars (temperature, pressure, composition), energy usage, and thermal integration effects on the overall system weight and size. Current mission scenarios require a system that will produce 0.7 kg of propellant a day for 500 days.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

1997-07-01
972388
We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

Self Contained Atmospheric Protective Ensemble (SCAPE) Suits Redesign and Implementation at Kennedy Space Center

2005-07-11
2005-01-2959
The Self Contained Atmospheric Protective Ensemble (SCAPE) suits, worn at the Kennedy Space Center (KSC) have been updated from the original 1970's design. The suits were renamed Propellant Handlers Ensemble (PHE) but are still commonly referred to as SCAPE. Several modifications to the suit were done over the last 20 years to improve the design for operational use. However, anthropometric changes in the user population over time have not been addressed. The following study addressed anthropometric concerns in the current SCAPE population. It was found that all suits had at least one area in which the recommended upper limit was exceeded by technicians. The most common areas to exceed the upper limit were: waist circumference, chest circumference and upper thigh circumference. Forearm circumference posed the least concern unless using long gauntlet glove which cause the twist lock ring to be located at the forearm rather than the wrist.
Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

Advanced Quartz-Enhanced Photoacoustic Trace Gas Sensor for Early Fire Detection

2008-06-29
2008-01-2091
A spectroscopic trace gas sensor using a distributed feedback diode laser at λ=1.53 µm and based on quartz enhanced photoacoustic spectroscopy technique is described. The sensor is capable of quasi-simultaneous quantification of trace ammonia, hydrogen cyanide, and acetylene (NH3, HCN, and C2H2, respectively) concentrations at ∼100 ppbv levels with a 4s integration time. The sensor design, responsivity, noise, and cross-talk characteristics are reported.
Journal Article

Minimizing EVA Airlock Time and Depress Gas Losses

2008-06-29
2008-01-2030
This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas.
Technical Paper

Nickel Hydrogen Battery Expert System

1992-08-03
929104
At present, Nickel Hydrogen batteries are tested at Marshall Space Flight Center (MSFC) in support of the Hubble Space Telescope (HST) program. In previous years, Nickel Cadmium batteries were tested at MSFC in support of HST. The Nickel Cadmium Battery Expert System-2 (NICBES-2) was employed on the HST six battery test bed to evaluate the performance of the HST Electrical Power System (EPS). With the beginning of testing of the nickel hydrogen six battery test bed, NICBES-2 had to be converted to NICkel Hydrogen Battery Expert System (NICHES). This paper describes the conversion of the NICBES-2 to the NICHES as well as future plans for NICHES.
Technical Paper

Periodic 10 K Metal Hydride Sorption Cryocooler System

1994-06-01
941621
A program is being performed to design, fabricate, and test a metal hydride sorption cryocooler system capable of supplying periodic refrigeration at 10 K. The system is intended to cool a focal plane array for a low-earth orbit satellite. The refrigeration is effected by sublimating solid hydrogen at 10 K. The solid hydrogen is produced in a batch process by cooling, solidifying, and subcooling liquid hydrogen formed at 30 K by a Joule-Thomson expansion. The spent hydrogen from the sublimation and Joule-Thomson expansion is absorbed by two metal hydride sorption bed assemblies.
Technical Paper

An Advanced Carbon Reactor Subsystem for Carbon Dioxide Reduction

1986-07-14
860995
Reduction of metabolic carbon dioxide is one of the essential steps in physiochemical air revitalization for long-duration manned space missions. Under contract with NASA Johnson Space Center, Hamilton Standard is developing an Advanced Carbon Reactor Subsystem (ACRS) to produce water and dense solid carbon from carbon dioxide and hydrogen. The ACRS essentially consists of a Sabatier Methanation Reactor (SMR) to reduce carbon dioxide with hydrogen to methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolyze methane to carbon and hydrogen. The hydrogen is recycled to the SMR, while the produce carbon is periodically removed from the CFR. The SMR is well-developed, while the CFR is under development. In this paper, the fundamentals of the SMR and CFR processes are presented and results of Breadboard CFR testing are reported.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Evaluation of the Risk of Circulating Microbubbles Under Simulated Extravehicular Activities After Bed Rest

1993-07-01
932220
This ground-based study compared the risk of microbubbles during decompression under simulated space extravehicular activities (EVA) after three days of six-degree head-down bed rest with three days of ambulatory control. Test subjects were exposed to a pressure of 44.8 kPa (6.5 psi), breathed 100% oxygen, and exercised at reduced pressure either in the supine (during experimental) or upright (control) position. Circulating microbubbles were monitored by a precordial Doppler ultrasound device, and were found in 52% (12/23) of control and 26% (6/23) of experimental exposures. Survival analysis using Cox proportional hazards regression showed that there was 0.22 times (95% confidence interval=0.07-0.68) reduction in the risk of high grade microbubbles after bed rest, compared to controls (p=0.004). This finding is of importance in evaluating the risk of DCS during EVA.
X