Refine Your Search

Topic

Search Results

Journal Article

Prediction of Temperature Field Inside Lithium-Ion Battery Based on Similarity Theory

2014-04-01
2014-01-1841
To accurately and efficiently predict the temperature fields inside a lithium-ion battery is key technology for the enhancement of battery thermal management and the improvement of battery performances. The dimensional analysis method is applied to derive similarity criterions and the similarity coefficients of battery interior temperature fields, based on the governing partial differential equations describing the three dimensional transient temperature field. To verify the correctness of similarity criterions and the similarity coefficients, 3D finite element models of battery temperature field are established with a prototype and scale model, on the assumption that the battery cell has single-layer structure and multi-layers structure separately. The simulation results show that the similarity criterions and the similarity coefficients are correct.
Journal Article

Impact of Control Methods on Dynamic Characteristic of High Speed Solenoid Injectors

2014-04-01
2014-01-1445
Accurate control of both the timing and quantity of injection events is critical for engine performance and emissions. The most serious problem which reduces the accuracy of the control operation in such systems is a time delay of the responsiveness for the opening and closing operation of the electromagnetic valve. Modern electronic control systems should be capable of driving high speed solenoid injectors at a very fast switch frequency with high efficiency and acceptable power requirements. In this paper, the dynamic characteristic of a high speed servo-hydraulic solenoid injector for diesel engine, with different driving circuits and control methods, is investigated. A pre-energizing control strategy based on a dual power supply is applied to speed up the opening response time of the injectors.
Journal Article

Torque Vectoring Control for Distributed Drive Electric Vehicle Based on State Variable Feedback

2014-04-01
2014-01-0155
Torque Vectoring Control for distributed drive electric vehicle is studied. A handling improvement algorithm for normal cornering maneuvers is proposed based on state variable feedback control: Yaw rate feedback together with steer angle feedforward is employed to improve transient response and steady gain of the yaw rate, respectively. According to the feedback coefficient's influence on the transient response, an optimization function is proposed to obtain optimum feedback coefficients under different speeds. After maximum feedforward coefficients under different speeds are obtained from the constraint of the motor exterior characteristic, final feedforward coefficients are calculated according to an optimal steering characteristic. A torque distribution algorithm is presented to help the driver to speed up during the direct yaw moment control.
Technical Paper

Simulations of Key Design Parameters and Performance Optimization for a Free-piston Engine

2010-04-12
2010-01-1105
To develop a free-piston engine-alternator integrative power system for Hybrid Electric Vehicles, the key design parameters, such as reciprocating mass of the piston assembly, compression ratio, the ignition timing, the engine fuel consumption rate and power output, are studied based on the simulation. The results show that, the system simulation model of the free piston engine can predict the in-cylinder pressure vs. the piston's displacement being accurate enough as the test results from reported reference. The model can be employed to optimize the design parameters and to predict the fuel economy and power output. It provides the methods and bases for the free piston engine design and predicting the main performance parameters' values.
Technical Paper

Whole Field Bonded Steel Tensile Test Using Digital Image Correlation System

2010-04-12
2010-01-0960
Adhesive bonding has many applications in the automotive industry. The single-lapped bonded joint is the most typically used among various bonding types. This paper presents experimental research for determining the strain field of the single-lapped joint under tensile loading. The materials for the joint are epoxy-based structural adhesive and low-carbon electrolytic zinc steel plate. In the study, a DIC (digital image correlation) system was adopted to measure the strain distribution of the bonded joint during a tensile test. The bonded steel coupons in the tensile test were prepared according to the ASTM standard. During the measurement, images of the coupon joint were taken before and after the deformation process. Then the DIC system measured the strain of bonded joint by comparing two consecutive images. The measured data from the DIC was compared to data taken simultaneously from a traditional extensometer.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Evaporation Characteristics of n-Heptane Droplet Streams in a Heated Air Channel Flow

2016-04-05
2016-01-0843
An experimental study is presented on the evaporation of diluted droplet-laden two-phase jet flows within a heated air channel co-flow. In this study, n-heptane is pre-atomized by an ultrasonic nozzle to produce droplet cluster with a median diameter of about15μm, and a continuous cold air flow is applied to carry the fuel droplet cluster to emerge from a nozzle tube, producing a free turbulent jet of droplet stream. The droplet stream is then introduced as a central jet into a square-shaped channel with heated air co-flow for evaporation investigations. With flexibilities of the initial properties of droplet stream and surrounding conditions of channel flow, the axial evolution of droplet size is determined to characterize the evaporation behavior of n-heptane droplet stream under various boundary conditions. The equivalence ratios of droplet streams are varied by changing both the carrier-air flow rate and the fuel flow rate.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

A New Method of Target Detection Based on Autonomous Radar and Camera Data Fusion

2017-09-23
2017-01-1977
Vehicle and pedestrian detection technology is the most important part of advanced driving assistance system (ADAS) and automatic driving. The fusion of millimeter wave radar and camera is an important trend to enhance the environmental perception performance. In this paper, we propose a method of vehicle and pedestrian detection based on millimeter wave radar and camera. Moreover, the proposed method complete the detection of vehicle and pedestrian based on dynamic region generated by the radar data and sliding window. First, the radar target information is mapped to the image by means of coordinate transformation. Then by analyzing the scene, we obtain the sliding windows. Next, the sliding windows are detected by HOG features and SVM classifier in a rough detect. Then using the match function to confirm the target. Finally detecting the windows in a precision detection and merging the detecting windows. The target detection process is carried out in the following three steps.
Technical Paper

Study on Fuel Economy Improvement by Low Pressure Water-Cooled EGR System on a Downsized Boosted Gasoline Engine

2016-04-05
2016-01-0678
This research was concerned with the use of Exhaust Gas Recirculation (EGR) improving the fuel economy over a wide operating range in a downsized boosted gasoline engine. The experiments were performed in a 1.3-Litre turbocharged PFI gasoline engine, equipped with a Low Pressure (LP) water-cooled EGR system. The operating conditions varied from 1500rpm to 4000rpm and BMEP from 2bar to 17bar. Meanwhile, the engine’s typical operating points in NEDC cycle were tested separately. The compression ratio was also changed from 9.5 to 10.5 to pursue a higher thermal efficiency. A pre-compressor throttle was used in the experiment working together with the EGR loop to keep enough EGR rate over a large area of the engine speed and load map. The results indicated that, combined with a higher compression ratio, the LP-EGR could help to reduce the BSFC by 9∼12% at high-load region and 3∼5% at low-load region.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
Technical Paper

Effect of Stratification on Ion Distribution in HCCI Combustion Using 3D-CFD with Detailed Chemistry

2013-10-14
2013-01-2512
Ion current sensing, which usually employs a spark plug as its sensor to obtain feedback signal from different types of combustion in SI engines, may be applied to HCCI combustion sensing instead of a prohibitively expensive piezoelectric pressure transducer. However, studies showed that the ion current detected by a spark plug sensor is a localized signal within the vicinity of the sensor's electrode gap, being affected by conditions around it. To find out better and feasible ion probe positions, a 3D-CFD model with a detailed surrogate mechanism containing 1423 species and 6106 reactions was employed to study the effect of stratification on ion distribution in HCCI combustion. The simulation results indicate that the monitor probe 1, 8 and 9 are more stable and reliable than the others. IONmax and dIONmax are more accurate to estimate CA50 and dQmax respectively.
Technical Paper

A New Method for Determination of Forming Limit Diagram Based on Digital Image Correlation

2013-04-08
2013-01-1421
In this paper, a new method for determining the forming limit diagram (FLD) of thin sheet metals, called DIC-Grid method, is proposed based on digital image correlation (DIC) technique. It's assumed that there exists one virtual grid with an initial diameter of 2.5mm, which is usually the same dimension as the grid in traditional circular grid analysis, close to the crack of specimen, and the limit strain point on FLD is determined by the deformation of this virtual grid. The DIC-Grid method has been compared with traditional circular grid analysis and the standard ISO/FDIS 12004-2 in Nakajima tests. The results show that the forming limit strains obtained by the newly proposed method are more stable and precise. Furthermore, DIC-Grid method can avoid the measurement error which exists in the circular grid analysis. Meanwhile, it overcomes the shortcomings of time-consuming data processing and non-applicable for unrealistic strain distribution in the method of ISO standard.
Technical Paper

Hybrid Brake System Control Strategy in Typical Transient Conditions

2014-04-01
2014-01-0267
The control in transient conditions when hydraulic brake and regenerative brake switch mutually is the key technical issue about electric vehicle hybrid brake system, which has a direct influence on the braking feel of driver and vehicle braking comfort. A coordination control system has been proposed, including brake force distribution correction module and motor force compensation module. Brake force distribution correction module has fixed the distribution results in hydraulic brake force intervention condition, hydraulic brake force evacuation condition and regenerative brake force low speed evacuation condition. Motor compensation module has compensated hydraulic system with motor system, which has fast and accurate response, thus the response of whole hybrid system has been improved.
Technical Paper

The System Identification for the Hydrostatic Drive System of Secondary Regulation Using Neural Networks

1996-10-01
962231
In this paper, the system identification theory and method using dynamic neural networks are presented, the multilayer feedforward networks employed, the backpropagation with adaptive learning rate algorithms proposed. Finally the comparision of network output with that of the hydrostatic drive system of secondary regulation is given, and output error, sum-squared error et al, or the results that embody the effect of system identification given sine input to it are provided.
Technical Paper

Research of Eliminating Method of Undesired Shifting for Vehicle with Dual Clutch Transmission

2013-04-08
2013-01-0485
The undesired shifting phenomenon(USP) occurs easily under the braking or climbing conditions etc., and its impact is the discomfort to the passengers or cause of vehicle's state contrary to the driver's intention, meanwhile, the wear of the clutch and synchronizer is increased, so their lifetime are greatly shortened. To the vehicle with dual clutch transmission (DCT), undesired shifting phenomenon will lead to frequent and unnecessary actuation of synchronizer for the use of pre-engagement synchronizer in the shifting control; therefore, its occurrence should be eliminated as far as possible. In this paper, the process of the undesired shifting of the vehicle with DCT is elaborated, then the generating cause of USP is described based on directed graph.
Technical Paper

Study on Lane Change Trajectory Planning Considering of Driver Characteristics

2018-08-07
2018-01-1627
Automatic lane change of intelligent vehicles is a complex process. Besides of safety, feelings of the driver and passengers during the lane change are also very important. In this paper, a lane change trajectory planner is designed to generate an ideal collision-free trajectory to satisfy the driver’s preference. Various lane changing modes, gentle lane change, general lane change, radical lane change and personalized lane change, are designed to meet the needs of different passengers on vehicles simultaneously. In this paper, the condition of the two-lane change is studied. One vehicle is in front of the ego vehicle at the same lane and one is at the rear of the ego vehicle at the target lane. A trajectory planning method is then established based on constant speed offset and sine curve, vehicle distances and speed difference, etc. The key factors which can reflect drivers’ lane change characteristics are then acquired.
Technical Paper

Correlation of Objective and Subjective Evaluation in Automotive Brake Pedal Feel

2018-10-05
2018-01-1889
In order to establish the correlation between objective and subjective evaluation of brake pedal feel for passenger cars, road tests of brake pedal feel were carried out and an evaluation method was proposed. In the road tests, subjective scores and objective measurements were obtained under the conditions of uniform and emergency braking. The objective measurements include pedal preload, low deceleration pedal force and travel, moderate deceleration pedal force and travel, brake response time and brake linearity. Using the theory of analytic hierarchy process (AHP), the design process of the evaluation method was established. Key setups including the hierarchical structure model, the judgement matrix and the score calculation method of objective measurements were described in detail. Then, the correlation between subjective and objective scores was analyzed. It can be concluded that the evaluation method is effective and it can be applied to brake pedal feel assessment and adjustment.
X