Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Control of Gear Ratio and Slip in Continuously Variable Transmissions: A Model Predictive Control Approach

2017-03-28
2017-01-1104
The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Design Environment for Nonlinear Model Predictive Control

2016-04-05
2016-01-0627
Model Predictive Control (MPC) design methods are becoming popular among automotive control researchers because they explicitly address an important challenge faced by today’s control designers: How does one realize the full performance potential of complex multi-input, multi-output automotive systems while satisfying critical output, state and actuator constraints? Nonlinear MPC (NMPC) offers the potential to further improve performance and streamline the development for those systems in which the dynamics are strongly nonlinear. These benefits are achieved in the MPC framework by using an on-line model of the controlled system to generate the control sequence that is the solution of a constrained optimization problem over a receding horizon.
Technical Paper

Emissions Modeling of a Light-Duty Diesel Engine for Model-Based Control Design Using Multi-Layer Perceptron Neural Networks

2017-03-28
2017-01-0601
The development of advanced model-based engine control strategies, such as economic model predictive control (eMPC) for diesel engine fuel economy and emission optimization, requires accurate and low-complexity models for controller design validation. This paper presents the NOx and smoke emissions modeling of a light duty diesel engine equipped with a variable geometry turbocharger (VGT) and a high pressure exhaust gas recirculation (EGR) system. Such emission models can be integrated with an existing air path model into a complete engine mean value model (MVM), which can predict engine behavior at different operating conditions for controller design and validation before physical engine tests. The NOx and smoke emission models adopt an artificial neural network (ANN) approach with Multi-Layer Perceptron (MLP) architectures. The networks are trained and validated using experimental data collected from engine bench tests.
X