Refine Your Search

Topic

Affiliation

Search Results

Journal Article

The Energy Management for Solar Powered Vehicle Parking Ventilation System

2015-04-14
2015-01-0149
In summer, when vehicle parks in direct sunlight, the closed cabin temperature would rise sharply, which affects the occupants step-in-car comfort Solar powered vehicle parking ventilation system adopts the solar energy to drive the original ventilator. Thus, the cabin temperature could be dramatically decreased and the riding comfort could be also improved. This research analyzed the modified crew cabin thermal transfer model. Then the performance of the solar powered ventilation system is analyzed and optimized combined with the power supply characteristics of the photovoltaic element. The storage and reuse of the solar power is achieved on condition that the cabin temperature could be steadily controlled. The research shows that, the internal temperature is mainly affected by the solar radiation intensity and the environment temperature.
Technical Paper

Research on Braking Energy Recovery Strategy of Pure Electric Vehicle

2021-10-11
2021-01-1264
With the increasingly serious global environmental and energy problems, as well as the increasing number of vehicles, pure electric vehicles with its advantages of environmental protection, low noise and renewable energy, become an effective way to alleviate environmental pollution and energy crisis. Due to the current pure electric vehicle power battery technology is not perfect, the range of pure electric vehicle has a great limit. Through the braking energy recovery, the energy can be reused, the energy utilization rate can be improved, and the battery life of pure electric vehicles can be improved. In this paper, a pure electric vehicle is taken as the analysis object, and the whole vehicle analysis model is built. Through the comparative analysis, based on the driver's braking intention and vehicle running state, the braking energy recovery control strategy of double fuzzy control is proposed.
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Technical Paper

Optimal Management of Charge and Discharge of Electric Vehicles Based on CAN Bus Communication

2020-04-14
2020-01-1297
With the shortage of energy and the continuous development of automotive technology, electric vehicles are gradually gaining popularity. The energy of electric vehicles mainly comes from the power grid, and its large-scale use is inseparable from the support of the power system. However, electric vehicles consume power quickly, have short driving ranges, and frequently charge, and there are plenty of problems such as disorder and randomness in charging, which is not conducive to rational planning of the power grid. Optimizing the charging problem of electric vehicles can not only save power resources but also bring huge economic benefits to operators of charging stations. In this paper, the CAN bus communication protocol, combined with GPS positioning, LabVIEW monitoring, GPRS transmitting and other technical means, can realize the information exchange of the "vehicle-charging device-distribution network".
Technical Paper

Optimization of Shifting Schedule of Vehicle Coasting Mode Based on Dynamic Mass Identification

2020-04-14
2020-01-1321
Correct shifting schedule of vehicle coasting mode play a vital role in improving vehicle comfort and economy. At present, the calibration of the transmission shifting schedule ignores the impact of vehicle’s dynamic mass. This paper proposes a method for optimizing the shifting schedule of the coasting modes with gear based on the dynamic mass identification of the vehicle. This method identifies the dynamic mass of the vehicle during driving and substitute them into the process of solving the shifting schedule parameters. Then we get the optimal shifting schedule. At first, establish the Extended Kalman Filter to Pre-process the experimental data, reducing errors caused by excessive data fluctuations. Then, establishing a weighted squares estimation model based on particle swarm optimization to identify the dynamic mass of the vehicle.
Technical Paper

Research on Solar Thermal Energy Warming Diesel Engine Based on Reverse Heat Transfer of Coolant

2020-04-14
2020-01-1343
In winter, the temperature of the coldest month is below -20°C. Low temperature makes it difficult to start a diesel engine, combust sufficiently, which increases fuel consumption and pollutes the environment. The use of an electric power-driven auxiliary heating system increases the battery load and power consumption. Solar thermal energy has the advantages of easy access, clean and pollution-free. The coolant in the cylinder block of the diesel engine has a large contact area within the cylinder and is evenly distributed, which can be used as a heat transfer medium for the warm-up. A one-dimensional heat transfer model of the diesel engine block for the coolant warm-up is developed, and the total heat required for the warm-up is calculated by an iterative method in combination with the warm-up target.
Journal Article

Design of the Linear Quadratic Control Strategy and the Closed-Loop System for the Active Four-Wheel-Steering Vehicle

2015-05-05
2015-01-9107
In the field of active safety, the active four-wheel-steering (4WS) system seems to be an attractive alternative and an effective tool to improve the vehicles' handling stability in lane-keeping control performance. Under normal using condition, the vehicle's lateral acceleration is comparatively small, and the mathematic relationship between the small side force excitation and the small slip angle of the tire is in the linear region. Furthermore, the effects of roll, heave, and pitch motions are neglected as well as the dynamic characteristics of the tires and suspension system in this work. Therefore, the linear quadratic control (LQC) theory is used to ensure that the output of the 4WS control system can keep track of the desired yaw rate and zero-sideslip-angle response can also be realized at the same time.
Journal Article

Prediction of Lithium-ion Battery's Remaining Useful Life Based on Relevance Vector Machine

2016-05-01
2015-01-9147
In the field of Electric Vehicle (EV), what the driver is most concerned with is that whether the value of the battery's capacity is less than the failure threshold because of the degradation. And the failure threshold means instability of the battery, which is of great danger for drives and passengers. So the capacity is an important indicator to monitor the state of health (SOH) of the battery. In laboratory environment, standard performance tests can be carried out to collect a number of related data, which are available for regression prediction in practical application, such as the on-board battery pack. Firstly, we make use of the NASA battery data set to form the observed data sequence for regression prediction. And a practical method is proposed to determine the minimum embedding dimension and get the recurrence formula, with which a capacity model is built.
Technical Paper

Parameter Optimization of Two-Speed AMT Electric Vehicle Transmission System

2020-04-14
2020-01-0435
At present, many electric vehicles are often equipped with only a single-stage final drive. Although the single-stage speed ratio can meet the general driving requirements of electric vehicles, if the requirements of the maximum speed and the requirements for starting acceleration or climbing are met at the same time, the power demand of the drive motor is relatively large, and the efficient area of the drive motor may be far away from the operating area corresponding to daily driving. If the two-speed automatic transmission is adopted, the vehicle can meet the requirements of maximum speed, starting acceleration and climbing at the same time, reduce the power demand of the driving motor, and improve the economy under certain power performance. This is especially important for medium and large vehicles.
Technical Paper

Real-time and Accurate Estimation of Road Slope for Intelligent Speed Planning System of Commercial Vehicle

2020-04-14
2020-01-0115
In the intelligent speed planning system, real-time estimation of road slope is the key to calculate slope resistance and realize the vehicles’ active safety control. However, if the road slope is measured by the sensor while the commercial vehicle is driving, the vibration of the vehicle body will affect its measurement accuracy. Therefore, the relevant algorithm is used to estimate the real-time slope of the road when the commercial vehicle is driving. At present, many domestic and foreign scholars have analyzed and tested the estimation of road slope by the least square method or Kalman filter algorithm. Although the two methods both can achieve the estimation, the real-time performance and accuracy still need to be improved. In this paper, for traditional fuel commercial vehicle, the Kalman filter algorithm based on the kinematics and the extended Kalman filter algorithm based on the longitudinal dynamics are respectively used to estimate the road slope.
Technical Paper

Decision Making and Trajectory Planning of Intelligent Vehicle’ s Lane-Changing Behavior on Highways under Multi-Objective Constrains

2020-04-14
2020-01-0124
Discretionary lane changing is commonly seen in highway driving. Intelligent vehicles are expected to change lanes discretionarily for better driving experience and higher traffic efficiency. This study proposed to optimize the decision-making and trajectory-planning process so that intelligent vehicles made lane changes not only with driving safety taken into account, but also with the goal to improve driving comfort as well as to meet the driver’ s expectation. The mechanism of how various factors contribute to the driver’s intention to change lanes was studied by carrying out a series of driving simulation experiments, and a Lane-Changing Intention Generation (LCIG) model based on Bi-directional Long Short-Term Memory (Bi-LSTM) was proposed.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

Kalman Filter Slope Measurement Method Based on Improved Genetic Algorithm-Back Propagation

2020-04-14
2020-01-0897
How to improve the measurement accuracy of road gradient is the key content of the research on the speed warning of commercial vehicles in mountainous roads. The large error of the measurement causes a significant effect of the vehicle speed threshold, which causes a risk to the vehicle's safety. Conventional measuring instruments such as accelerometers and gyroscopes generally have noise fluctuation interference or time accumulation error, resulting in large measurement errors. To solve this problem, the Kalman filter method is used to reduce the interference of unwanted signals, thereby improving the accuracy of the slope measurement. However, the Kalman filtering method is limited by the estimation error of various parameters, and the filtering effect is difficult to meet the project research requirements.
Technical Paper

A Novel Velocity Planner for Autonomous Vehicle Considering Human Driver’s Habits

2020-04-14
2020-01-0133
In automatic driving application, the velocity planner can be considered as a key factor to ensure the safety and comfort. One of the most important tasks of the velocity planner is to simulate the velocity characteristics of human drivers. In this paper, two Driver In-the-Loop (DIL) experiments are designed to explain velocity characteristics of human drivers. In the first experiment, static obstacles are placed on both sides of the straight road to shorten the cross range that vehicles can driver across. Moreover, different cross ranges are set to study the influence of the steering wheel error. In the second experiment, velocity characteristics are investigated under the condition of different road widths and curvatures in a U-turn road contour. In both tests, different drivers’ preview behavior is analyzed through the operation of throttle, braking, and steering.
Journal Article

Research on Driving Posture Comfort Based on Relation between Drivers' Joint Angles and Joint Torques

2014-04-01
2014-01-0460
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found.
Journal Article

A Wavelet Neural Network Method to Determine Diesel Engine Piston Heat Transfer Boundary Conditions

2012-09-10
2012-01-1760
This paper presents a method of calculating temperature field of the piston by using a wavelet neural network (WNN) to identify the unknown boundary conditions. Because of the complexity of the heat transfer and limitations of experimental conditions of heat transfer analysis of the piston in a diesel engine, boundary conditions of the piston temperature field were usually obtained empirically, and thus the result itself was uncertain. By employing the capability of resolution analysis from a wavelet neural network, the method obtains improved boundary heat transfer coefficients with a limited number of measured temperatures. Using FEA software iteratively, results show the proposed wavelet neural network analysis method improves the prediction of unknown boundary conditions and temperature distribution consistent with the experimental data with an acceptable error.
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. The vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on the Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section ahead of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
Technical Paper

An Image Recognition Application Method for Vertical Movement of Vehicles

2020-04-14
2020-01-0733
In ITS, image processing technology is applied to a wide variety of areas such as visual-based intelligent vehicle navigation, visual-based traffic monitoring and visual-based traffic management. In the recognition system of the vehicle body characteristics, most of the recognition is the license plate and the car emblem, etc. This paper proposes an image recognition application method for the vertical motion of the car while driving, mainly including vertical height detection and vertical displacement velocity acceleration recognition. The edge detection model of the image object is established by using the gray image to obtain the car motion segmentation image. At the same time, an image length and actual length coordinate conversion model is established, which can calculate an arbitrary actual length of the image object. In this paper, Yuejin Shangjun X500 van was selected as the test vehicle, and the video data was captured with a camera.
Technical Paper

Automatic Parking Control Algorithms and Simulation Research Based on Fuzzy Controller

2020-04-14
2020-01-0135
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, which may cause traffic accidents such as vehicle collisions and road jams because of poor parking skills. The emergence of an automatic parking system can help drivers park safely and reduce the occurrence of safety accidents. In this paper, the neural network identifier on the control method of an adaptive integral derivative of a neural network is proposed for an automatic parallel parking system with front-wheel steering is studied by using MATLAB/Simulink environment, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space, and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial.
Technical Paper

Effect of Stator Surface Area on Braking Torque and Wall Heat Dissipation of Magnetorheological Fluid Retarder

2020-04-14
2020-01-0937
Magnetorheological fluid (MRF) is used as the transmission medium of the hydraulic retarder. The rheological properties are regulated by changing the magnetic field to achieve accurate control of the retarder's braking torque. Under the action of the external magnetic field, the flow structure and performance of the MRF retarder will be changed in a short time. The apparent viscosity coefficient increases by several orders of magnitude, the fluidity deteriorates and the heat generated by the brake cannot be transferred through the liquid circulation, which will affect the braking torque of the retarder. Changing the surface area of the stator also has an influence on the braking torque of the retarder and the wall heat dissipation. In this study, the relationship between the braking torque of the MRF retarder and the stator surface area of the retarder was analyzed.
X