Refine Your Search

Topic

Search Results

Journal Article

Well-To-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

2009-04-20
2009-01-1309
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model incorporated fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). Based on PSAT simulations of the blended charge depleting (CD) operation, grid electricity accounted for a share of the vehicle’s total energy use ranging from 6% for PHEV 10 to 24% for PHEV 40 based on CD vehicle mile traveled (VMT) shares of 23% and 63%, respectively. Besides fuel economy of PHEVs and type of on-board fuel, the type of electricity generation mix impacted the WTW results of PHEVs, especially GHG emissions.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Journal Article

Comparison of Powertrain Configuration for Plug-in HEVs from a Fuel Economy Perspective

2008-04-14
2008-01-0461
With the success of hybrid electric vehicles (HEVs) and the still uncertain long-term solution for vehicle transportation, Plug-in Hybrid Electric Vehicles (PHEV) appear to be a viable short-term solution and are of increasing interest to car manufacturers. Like HEVs, PHEVs offer two power sources that are able to independently propel the vehicle. They also offer additional electrical energy onboard. In addition to choices about the size of components for PHEVs, choices about powertrain configuration must be made. In this paper, we consider three potential architectures for PHEVs for 10- and 40-mi All Electric Range (AER) and define the components and their respective sizes to meet the same set of performance requirements. The vehicle and component efficiencies in electric-only and charge-sustaining modes will be assessed.
Technical Paper

Midsize and SUV Vehicle Simulation Results for Plug-In HEV Component Requirements

2007-04-16
2007-01-0295
Because Plug-in Hybrid Electric Vehicles (PHEVs) substitute electrical power from the utility grid for fuel, they have the potential to reduce petroleum use significantly. However, adoption of PHEVs has been hindered by expensive, low-energy batteries. Recent improvements in Li-ion batteries and hybrid control have addressed battery-related issues and have brought PHEVs within reach. The FreedomCAR Office of Vehicle Technology has a program that studies the potential benefit of PHEVs. This program also attempts to clarify and refine the requirements for PHEV components. Because the battery appears to be the main technical barrier, both from a performance and cost perspective, the main efforts have been focused on that component. Working with FreedomCAR energy storage and vehicle experts, Argonne National Laboratory (Argonne) researchers have developed a process to define the requirements of energy storage systems for plug-in applications.
Technical Paper

Evolution of Hydrogen Fueled Vehicles Compared to Conventional Vehicles from 2010 to 2045

2009-04-20
2009-01-1008
Fuel cell vehicles are undergoing extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and there is limited demand for hydrogen at present, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. This paper compares the fuel economy potential of hydrogen powertrains to conventional gasoline vehicles. Several timeframes are considered: 2010, 2015, 2030, and 2045. To address the technology status uncertainty, a triangular distribution approach was implemented for each component technology. The fuel consumption and cost of five powertrain configurations will be discussed and compared with the conventional counterpart.
Technical Paper

Impact of Real-World Drive Cycles on PHEV Battery Requirements

2009-04-20
2009-01-1383
Plug-in hybrid electric vehicles (PHEVs) have the ability to significantly reduce petroleum consumption. Argonne National Laboratory (Argonne), working with the FreedomCAR and Fuels Partnership, helped define the battery requirements for PHEVs. Previous studies demonstrated the impact of the vehicle's characteristics, such as its class, mass, or electrical accessories, on the requirements. However, questions on the impact of drive cycles remain outstanding. In this paper, we evaluate the consequences of sizing the electrical machine and the battery to follow standard drive cycles, such as the urban dynamometer driving schedule (UDDS), as well as real-world drive cycles in electric vehicle (EV) mode. The requirements are defined for several driving conditions (e.g., urban, highway) and types of driving behavior (e.g., smooth, aggressive).
Technical Paper

Tahoe HEV Model Development in PSAT

2009-04-20
2009-01-1307
Argonne National Laboratory (Argonne) and Idaho National Laboratory (INL), working with the FreedomCAR and Fuels Partnership, lead activities in vehicle dynamometer and fleet testing as well as in modeling activities. By using Argonne’s Advanced Powertrain Research Facility (APRF), the General Motors (GM) Tahoe 2-mode was instrumented and tested in the 4-wheel-drive test facility. Measurements included both sensors and controller area network (CAN) messages. In this paper, we describe the vehicle instrumentation as well as the test results. On the basis of the analysis performed, we discuss the vehicle model developed in Argonne’s vehicle simulation tool, the Powertrain System Analysis Toolkit (PSAT), and its comparison with test data. Finally, on-road vehicle data, performed by INL, is discussed and compared with the dynamometer results.
Technical Paper

Prospects on Fuel Economy Improvements for Hydrogen Powered Vehicles

2008-10-06
2008-01-2378
Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered.
Technical Paper

Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle

2010-04-12
2010-01-0816
A multimode transmission combines several power-split modes and possibly several fixed gear modes, thanks to complex arrangements of planetary gearsets, clutches and electric motors. Coupled to a battery, it can be used in a highly flexible hybrid configuration, which is especially practical for larger cars. The Chevrolet Tahoe Hybrid is the first light-duty vehicle featuring such a system. This paper introduces the use of a high-level vehicle controller based on instantaneous optimization to select the most appropriate mode for minimizing fuel consumption under a broad range of vehicle operating conditions. The control uses partial optimization: the engine ON/OFF and the battery power demand regulating the battery state-of-charge are decided by a rule-based logic; the transmission mode as well as the operating points are chosen by an instantaneous optimization module that aims at minimizing the fuel consumption at each time step.
Technical Paper

Plug-and-Play Software Architecture to Support Automated Model-Based Control Process

2010-10-05
2010-01-1996
To reduce development time and introduce technologies to the market more quickly, companies are increasingly turning to Model-Based Design. The development process - from requirements capture and design to testing and implementation - centers around a system model. Engineers are skipping over a generation of system design processes based on hand coding and instead are using graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a plug-and-play software environment, to evaluate a component hardware in an emulated environment. We will discuss best practices and show the process through evaluation of an advanced high-energy battery pack within an emulated plug-in hybrid electric vehicle.
Technical Paper

Modeling the Hybridization of a Class 8 Line-Haul Truck

2010-10-05
2010-01-1931
Hybrid electric vehicles have demonstrated their ability to significantly reduce fuel consumption for several medium- and heavy-duty applications. In this paper we analyze the impact on fuel economy of the hybridization of a tractor-trailer. The study is done in PSAT (Powertrain System Analysis Toolkit), which is a modeling and simulation toolkit for light- and heavy-duty vehicles developed by Argonne National Laboratory. Two hybrid configurations are taken into account, each one of them associated with a level of hybridization. The mild-hybrid truck is based on a parallel configuration with the electric machine in a starter-alternator position; this allows start/stop engine operations, a mild level of torque assist, and a limited amount of regenerative braking. The full-hybrid truck is based on a series-parallel configuration with two electric machines: one in a starter-alternator position and another one between the clutch and the gearbox.
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
Technical Paper

The New PNGV System Analysis Toolkit PSAT V4.1 - Evolution and Improvement

2001-08-20
2001-01-2536
Argonne National Laboratory (ANL), working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software, the PNGV System Analysis Toolkit (PSAT). PSAT, originally proprietary, has been used by both DOE and the “Big Three” as a modeling tool. The number of PSAT users has increased recently because 15 universities participating in the 2001 FutureTruck competition were given the software for their use. PSAT allows companies to look at new types of vehicles (hybrids) and choose the best configuration according to customer expectations within a minimum of time. PSAT, a forward-looking model, allows the user to simulate a large number of different configurations (conventional, series, parallel, and power split). PSAT is well suited for development of control strategies; by using accurate dynamics component models as its code, PSAT can be implemented directly and tested at the bench scale or in a vehicle.
Technical Paper

Model-Based Fuel Economy Technology Assessment

2017-03-28
2017-01-0532
Many leading companies in the automotive industry have been putting tremendous amount of efforts into developing new designs and technologies to make their products more energy efficient. It is straightforward to evaluate the fuel economy benefit of an individual technology in specific systems and components. However, when multiple technologies are combined and integrated into a whole vehicle, estimating the impact without building and testing an actual vehicle becomes very complex, because the efficiency gains from individual components do not simply add up. In an early concept phase, a projection of fuel efficiency benefits from new technologies will be extremely useful; but in many cases, the outlook has to rely on engineer’s insight since it is impractical to run tests for all possible technology combinations.
Technical Paper

Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles)

2016-04-05
2016-01-0903
The energy density and power density comparison of conventional fuels and batteries is often mentioned as an advantage of conventional vehicles over electric vehicles. Such an analysis often shows that the batteries are at least an order of magnitude behind fuels like gasoline. However this incomplete analysis ignores the impact of powertrain efficiency and mass of the powertrain itself. When we compare the potential of battery electric vehicles (BEVs) as an alternative for conventional vehicles, it is important to include the energy in the fuel and their storage as well as the eventual conversion to mechanical energy. For instance, useful work expected out of a conventional vehicle as well as a BEV is the same (to drive 300 miles with a payload of about 300 lb). However, the test weight of a Conventional vehicle and BEV will differ on the basis of what is needed to convert their respective stored energy to mechanical energy.
Technical Paper

Potential Cost Savings of Combining Power and Energy Batteries in a BEV 300

2016-04-05
2016-01-1213
Present-day battery technologies support a battery electric vehicle with a 300mile range (BEV 300), but the cost of such a vehicle hinders its large-scale adoption by consumers. The U.S. Department of Energy (DOE) has set aggressive cost targets for battery technologies. At present, no single technology meets the cost, energy, and power requirements of a BEV 300, but a combination of multiple batteries with different capabilities might be able to lower the overall cost closer to the DOE target. This study looks at how such a combination can be implemented in vehicle simulation models and compares the vehicle manufacturing and operating costs to a baseline BEV 300. Preliminary analysis shows an opportunity to modestly reduce BEV 300 energy storage system cost by about 8% using a battery pack that combines an energy and power battery. The baseline vehicle considered in the study uses a single battery sized to meet both the power and energy requirements of a BEV 300.
Technical Paper

Control Analysis and Model Validation for BMW i3 Range Extender

2017-03-28
2017-01-1152
The control analysis and model validation of a 2014 BMW i3-Range Extender (REX) was conducted based on the test data in this study. The vehicle testing was performed on a chassis dynamometer set within a thermal chamber at the Advanced Powertrain Research Facility at Argonne National Laboratory. The BMW i3-REX is a series-type plug-in hybrid range extended vehicle which consists of a 0.65L in-line 2-cylinder range-extending engine with a 26.6kW generator, 125kW permanent magnet synchronous AC motor, and 18.8kWh lithium-ion battery. Both component and vehicle model including thermal aspects, were developed based on the test data. For example, the engine fuel consumption rate, battery resistance, or cabin HVAC energy consumption are affected by the temperature. Second, the vehicle-level control strategy was analyzed at normal temperature conditions (22°C ambient temperature). The analysis focuses on the engine on/off strategy, battery SOC balancing, and engine operating conditions.
Technical Paper

Long Term Impact of Vehicle Electrification on Vehicle Weight and Cost Breakdown

2017-03-28
2017-01-1174
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
X