Refine Your Search

Topic

Search Results

Technical Paper

Study on Steering Effort Preference of Drivers Based on Driving Simulator

2007-08-05
2007-01-3575
This paper presents a study on steering effort preference of Chinese drivers based on ADSL Driving Simulator. The results of the simulation test demonstrates that Chinese drivers' steering effort preference increases with vehicle speed, which is similar to European and Japanese drivers', but the mean preference effort level itself is lower than that of European and Japanese drivers' and this same steering effort preference increases obviously with lateral acceleration in linear region (lateral acceleration level lower than 0.3g) while not as evidently in nonlinear region (lateral acceleration level higher than 0.3g).
Technical Paper

A Driver Direction Control Model and its Application in the Simulation of Driver-Vehicle-Road Closed-Loop System

2000-06-06
2000-01-2184
The research of driver behavior characteristics has been a focus of vehicle handling and stability performance. With the driver preview effort, many different driver preview models of direction control have been proposed and the simulations of driver-vehicle-road closed-loop system made. But in the simulation, most of the conventional models have the same precondition that the road was simply described as a pre-given preview course. How to simulate the driver dynamically deciding vehicle preview course based on the real road circumstance is the key to the further research of the driver model. In this paper, a new driver direction control model is established, which is called the Optimal Preview Lateral Acceleration (OPLA) Model and divided into three sub-models: driver’s information identification model, driver’s fuzzy decision model of vehicle preview course and driver’s performance first-order correction model.
Technical Paper

Numerical Achieved Extended Kalman Filter State Observer Design Based on a Vehicle Model Containing UniTire Model

2008-06-23
2008-01-1783
It is difficult to obtain state variables accurately or economically while vehicle is moving, however these state variables are significant for chassis control. Although many researches have been done, a complex model always leads to a control system with poor real-time performance, while simple model cannot show the real characteristics. So, in order to estimate the value of yaw rate and side slip angle accurately and sententiously, an Extended Kalman Filter (EKF) observer is proposed, which is based on an ameliorated 2-DOF “bicycle model”. The EKF algorithm is achieved numerically and verified by the results from the real field test.
Journal Article

Fault-Tolerant Control for 4WID/4WIS Electric Vehicle Based on EKF and SMC

2015-09-29
2015-01-2846
This paper presents a fault-tolerant control (FTC) algorithm for four-wheel independently driven and steered (4WID/4WIS) electric vehicle. The Extended Kalman Filter (EKF) algorithm is utilized in the fault detection (FD) module so as to estimate the in-wheel motor parameters, which could detect parameter variations caused by in-wheel motor fault. A motion controller based on sliding mode control (SMC) is able to compute the generalized forces/moments to follow the desired vehicle motion. By considering the tire adhesive limits, a reconfigurable control allocator optimally distributes the generalized forces/moments among healthy actuators so as to minimize the tire workloads once the actuator fault is detected. An actuator controller calculates the driving torques of the in-wheel motors and steering angles of the wheels in order to finally achieve the distributed tire forces. If one or more in-wheel motors lose efficacy, the FD module diagnoses the actuator failures first.
Technical Paper

Integrated HIL Test and Development System for Pneumatic ABS/EBS ECU of Commercial Vehicles

2012-09-24
2012-01-2031
The quality of the brake system is a significant safety factor in commercial vehicles on the roads. With the development of automobile technology, the single function ABS system didn't meet active safety requirements of the user. The Electronically Controlled Brake System (EBS) system will replace the ABS system to become the standard safety equipment of commercial vehicles in the near future. EBS can be said an enhanced ABS system, it contains load sensor, brake valve sensor and pressure sensor of chamber, etc, and it is more advantages than ABS. This paper describes a flexible integrated test bench for ABS/EBS Electronic Control Unit (ECU) based on Hardware-In-the-Loop (HIL) simulation technique. It consists of most commercial vehicle pneumatic braking system components (from brake pedal valve, brake caliper to brake chambers), and uses the dSPACE real-time simulation system to communicate to the hardware I/O interface.
Technical Paper

Design, Development and Application of Test Bench for Electrically Controlled Steering Systems

2018-04-03
2018-01-0702
This essay aims to develop an electrically controlled steering test bench and lay a solid foundation for the development of steering system. The first part mainly introduces the function, structure and working principle of the test bench. For the hardware system, it includes the steering system, fixture, sensors as well as a frameless disk motor for carrying out automatic motor input, and a dual linear motor system selected as the road resistance simulation actuator. As for the software, MATLAB/Simulink, CarSim, RTI and ControlDesk are used. Therefore, with the help of real-time simulation platform, researchers can not only build control strategy and dynamic model but also control the experiment and tune parameters in real-time. The second part of the essay aims to identify both electric and mechanical parameters of R-EPS system by carrying out tests on the proposed test bench. As parameters are successfully identified, the feasibility of the test bench is also verified.
Technical Paper

Fault-Tolerant Control for 4WID/4WIS Electric Vehicles

2014-10-13
2014-01-2589
The passive fault-tolerant approach for four-wheel independently driven and steered (4WID/4WIS) electric vehicles has been investigated in this study. An adaptive control based passive fault-tolerant controller is designed to improve vehicle safety, performance and maneuverability when an actuator fault happens. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures with the inequality constraints; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using Model Predictive Control (MPC); 3) a reconfigurable control allocator that redistributes the generalized forces/moments to four wheels with equality constrained optimization.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Technical Paper

Combined State Estimation and Active Fault Detection of Individual-Wheel-Drive Vehicles: An Adaptive Observer-Based Approach

2015-04-14
2015-01-1107
This paper presents an adaptive observer-based approach for the combined state estimation and active fault detection and isolation (FDI) of the individual-wheel-drive (IWD) vehicles. A 3-DOF vehicle model coupled with the Highway Safety Research Institute (HSRI) tire model is established and used as the observation model. Based on this model, the dual unscented Kalman filter (DUKF) technique is employed for the observer design to give fusion results of the interdependent state and parameter variables, which undergo nonlinear transformations, with the minimum square errors. Effectiveness of the proposed algorithm is examined and validated through co-simulation between MATLAB/Simulink and CarSim. The results demonstrate that the DUKF-based observer effectively filters the sensor signals, accurately obtains the longitudinal and lateral velocities, explicitly isolates the faulty wheel(s) and accurately estimates the actual torque(s) even with the presence of noise.
Technical Paper

Detection and Tracking Algorithm of Front Vehicle Based on Laser Radar

2015-04-14
2015-01-0307
Nowadays active collision avoidance has become a major focus of research, and a variety of detection and tracking methods of obstacles in front of host vehicle have been applied to it. In this paper, laser radars are chosen as sensors to obtain relevant information, after which an algorithm used to detect and track vehicles in front is provided. The algorithm determines radar's ROI (Region of Interest), then uses a laser radar to scan the 2D space so as to obtain the information of the position and the distance of the targets which could be determined as obstacles. The information obtained will be filtered and then be transformed into cartesian coordinates, after that the coordinate point will be clustered so that the profile of the targets can be determined. A threshold will be set to judge whether the targets are obstacles or not. Last Kalman filter will be used for target tracking. To verify the presented algorithm, related experiments have been designed and carried out.
Journal Article

Bilateral Control Method of Torque Drive/Angle Feedback Used for Steer-by-Wire System

2012-04-16
2012-01-0792
Steer-by-Wire system is capable of improving the performance of vehicle handling and stability, and assisting driving. It becomes a key technique to control front wheel angle and simulate the steering resistance delivered to the driver because of removing mechanical linkages between the steering wheel and the front wheels. This paper proposes a bilateral control method of steering wheel torque drive/pinion angle feedback, which is disaccustomed of controlling steering wheel block and steering actuator as master-slave plants. The pinion angle, steering wheel angle and its torque signals are used in the control logic without estimating or measuring the tire/road force. Simulations and vehicle experiments proceeded with this proposed method and the results confirmed that it achieves the bilateral control of the position and torque between the two plants.
Technical Paper

Friction Compensation Control Method Research of Electric Power Steering System

2016-04-05
2016-01-1545
A new electric power steering system (EPS) dynamic friction model based on normalized Bouc-Wen model is given, as well as its structure form and model features. In addition, experimental method is used to identify corresponding parameters. In order to improve road feel feedback, this paper analyzes the shortcoming of traditional constant friction compensation control method and proposes a variable friction compensation control method which the friction compensation current changes according to the assist characteristic gain. Through simulation and real vehicle test verification, variable friction compensation control method eliminates the effect of basic assist characteristic, and improves the driver’s road feel under high speed.
Technical Paper

Research on Electric Vehicle Braking Force Distribution for Maximizing Energy Regeneration

2016-04-05
2016-01-1676
The driving range of the electric vehicle (EV) greatly restricts the development of EVs. The vehicles waste plenty of energy on account of automobiles frequently braking under the city cycle. The regenerative braking system can convert the braking kinetic energy into the electrical energy and then returns to the battery, so the energy regeneration could prolong theregenerative braking system. According to the characteristics of robustness in regenerative braking, both regenerative braking and friction braking based on fuzzy logic are assigned after the front-rear axle’s braking force is distributed to meet the requirement of braking security and high-efficient braking energy regeneration. Among the model, the vehicle model and the mechanical braking system is built by the CRUISE software. The paper applies the MATLAB/SIMULINK to establish a regenerative braking model, and then selects the UEDC city cycle for model co-simulation analysis.
Technical Paper

Vehicle Mass Estimation for Heavy Duty Vehicle

2015-09-29
2015-01-2742
Aiming at estimating the vehicle mass and the position of center of gravity, an on-line two-stage estimator, based on the recursive least square method, is proposed for buses in this paper. Accurate information of the center of gravity position is crucial to vehicle control, especially for buses whose center of gravity position can be varied substantially because of the payload onboard. Considering that the buses start and stop frequently, the first stage of the estimator determines the bus total mass during acceleration, and the second stage utilizes the recursive least-square methods to estimate the position of the center of gravity during braking. The proposed estimator can be validated by the co-simulation with MATLAB/Simulink and TruckSim software, simulation results exhibit good convergence and stability, so the center of gravity position can be estimated through the proposed method in a certain accuracy range.
Technical Paper

Research on Vehicle Height Adjustment Control of Electronically Controlled Air Suspension

2015-09-29
2015-01-2750
Electronically controlled air suspension (ECAS) systems have been widely used in commercial vehicles to improve the ride comfort and handling stability of vehicles, as it can adjust vehicle height according to the driving conditions and the driver's intent. In this paper, the vehicle height adjustment process of ECAS system is studied. A mathematical model of vehicle height adjustment is derived by combining vehicle dynamics theory and thermodynamics theory of variable mass system. Reasons lead to the problems of “over-charging”, “over-discharging” and oscillation during the process of height adjustment are analyzed. In order to solve these problems, a single neuron proportional-integral-derivative (PID) controller is proposed to realize the accurate control of vehicle height. By simulation and semi-physical rig test, the effectiveness and performance of the proposed control algorithm are verified.
Technical Paper

Passive Fault-Tolerant Performance of 4WID/4WIS Electric Vehicles Based on MPC and Control Allocation

2013-09-08
2013-24-0145
The passive fault-tolerant performance of the integrated vehicle controller (IVC) applied on 4WID/4WIS Electric Vehicles has been investigated in this study. The 4WID/4WIS EV is driven independently by four in-wheel motors and steered independently by four steering motors. Thanks to increased control flexibility of the over-actuated architecture, Control Allocation (CA) can be applied to control the 4WID/4WIS EVs so as to improve the handling and stability. Another benefit of the over-actuated architecture is that the 4WID/4WIS Electric Vehicle has sufficient redundant actuators to fight against the safety critical situation when one or more actuators fail.
Technical Paper

Braking Force Distribution and Coordinated Control Algorithm for Hybrid Electric Bus based on EBS

2014-04-01
2014-01-1908
In order to improve the braking energy recovery and ensure the braking comfort, a new type of regenerative braking coordinated control algorithm is designed in this paper. The hierarchical control theory is used to the regenerative braking control algorithm. First, the front axle braking force and rear axle braking force are distributed. Then the rear axle motor braking force and mechanical braking force are distributed. Finally, the dynamic coordinated control strategy is designed to control pneumatic braking system and motor braking system. Aimed at keeping the fluctuation of the total braking force of friction and the regenerative braking force small during braking modes switch, a coordinated controller was designed to control the pneumatic braking system to compensate the error of the motor braking force. Based on Matlab/Simulink platform, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Journal Article

Actuator Fault Detection and Diagnosis of 4WID/4WIS Electric Vehicles

2013-10-14
2013-01-2544
A fault detection and diagnosis (FDD) algorithm of 4WID/4WIS Electric Vehicles has been proposed in this study aiming to find the actuator faults. The 4WID/4WIS EV is one of the promising architectures for electric vehicle designs which is driven independently by four in-wheel motors and steered independently by four steering motors. The 4WID/4WIS EVs have many potential abilities in advanced vehicle control technologies, but diagnosis and accommodation of the actuator faults becomes a significant issue. The proposed FDD approach is an important part of the active fault tolerant control (AFTC) algorithm. The main objective of the FDD approach is to monitor vehicle states, find the faulty driving motor and then feedback fault information to the controller which would adopt appropriate control laws to accommodate the post-fault vehicle control system.
X