Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

Role of Environmental Factors in Immunity and Infectious Disease Risk

2005-07-11
2005-01-2763
Environmental monitoring of microbial contaminants is important for crew health and assessing functionality of engineering systems. Routine monitoring of air and surfaces on the International Space Station found Staphylococcus spp. to be the most common bacterial species whereas Aspergillus spp. were the most common fungi. The levels of microbial contaminants in the air and surfaces were typically low and within the acceptability limits. Bacterial levels in the potable water from the hot water port were uniformly low. Levels in water from the warm port and the SVO-ZV water distribution system exceeded acceptability limits on occasion. Methylobacterium spp. And Ralstonia spp. were the bacteria most commonly isolated from the potable water systems. The space environment, stress, and other factors may also diminish the host immune system. The status of antimicrobial functions of neutrophils and monocytes was determined by flow cytometry.
Technical Paper

Utilization of the Space Station Detergent IGEPON by a Candidate Organism for Use in a Space Biological Waste Reactor

1998-07-13
981608
The microgravity environment of space introduces a major new variable for consideration that will affect the design and operation of bioreactors. Adequate aeration for aerobic bioreactors will be a challenge as will gas/liquid separation, removal of carbon dioxide and other bacterial metabolic waste products, control algorithms, and overall performance assessment. These challenges must be addressed in order to fully assess the efficacy of biological approaches to the recovery of potable water from wastewater in microgravity. The first step in this process is to define the fermentation parameters of the organism or consortia that will be used in these space bioreactors. This study was designed to investigate the ability of bacteria to degrade the space station detergent IGEPON.
Technical Paper

Inflight Microbial Analysis Technology

1987-07-01
871493
This paper provides an assessment of functional characteristics needed in the microbial water analysis system being developed for Space Station. Available technology is reviewed with respect to performing microbial monitoring, isolation, or identification functions. An integrated system composed of three different technologies is presented.
Technical Paper

Development Program for a Zero-G Whole Body Shower

1987-09-01
871522
In 1985, the Man-Systems Division at the Johnson Space Center initiated a program for the development of a whole body shower suitable for operation in a microgravity environment. Supporting this development effort has been a systematic research program focused on four critical aspects of the design (i.e., human factors engineering, biomedical, mechanical, and electrical) and on the interfaces between the whole body shower system and the other systems to be aboard the Space Station (e.g., the water reclamation and air revitalization systems). A series of tests has been conducted to help define the design requirements for the whole body shower. Crew interface research has identified major design parameters related to enclosure configurations, consumable quantities, operation timelines, displays and controls, and shower and cleanup protocols.
Technical Paper

Microbial Surveillance of Potable Water Sources of the International Space Station

2005-07-11
2005-01-2886
To mitigate risk to crew health, the microbial surveillance of the quality of potable water sources of the International Space Station (ISS) has been ongoing since before the arrival of the first permanent crew. These water sources have included stored ground-supplied water, water produced by the Shuttle fuel cells during flight, and ISS humidity condensate that is reclaimed and processed. In-flight monitoring was accomplished using a self-contained filtering system designed to allow bacterial growth and enumeration during flight. Upon return to Earth, microbial isolates were identified using 16S ribosomal gene sequencing. While the predominant isolates were common Gram negative bacteria including Ralstonia eutropha, Methylobacterium fujisawaense, and Sphingomonas paucimobilis, opportunistic pathogens such as Stenotrophomonas maltophilia and Pseudomonas aeruginosa were also isolated.
Technical Paper

Microbiological Analysis of Water in Space

1995-07-01
951683
One of the proposed methods for monitoring the microbial quality of the water supply aboard the International Space Station is membrane filtration. We adapted this method for space flight by using an off-the-shelf filter unit developed by Millipore. This sealed unit allows liquid to be filtered through a 0.45 μm cellulose acetate filter that sits atop an absorbent pad to which growth medium is added. We combined a tetrazolium dye with R2A medium to allow microbial colonies to be seen easily, and modified the medium to remain stable over 70 weeks at 25°C. This hardware was assembled and tested in the laboratory and during parabolic flight; a modified version was then flown on STS-66. After the STS-66 mission, a back-up plastic syringe and an all-metal syringe pump were added to the kit, and the hardware was used successfully to evaluate water quality aboard the Russian Mir space station.
Technical Paper

Microbiology Standards for the International Space Station

1995-07-01
951682
The Crew Health System (CHeCS) plays a pivotal role in monitoring the life-support activities that maintain space station environmental quality and crew safety. Sampling hardware will be used in specific protocols to monitor the microbial dynamics of the closed spacecraft environment. NASA flight experience, ground-based studies, consultations with clinical and environmental microbiologists, and panel discussions with experts in engineering, flight-crew operations, microbiology, toxicology, and water quality systems all have been integral to the revision of in-flight microbial standards. The new standards for air and internal surfaces differentiate between bacterial and fungal loads, unlike previous standards that relied on total microbial counts. Microorganisms that must not be present in air or water or on surfaces also are listed.
Technical Paper

Preflight and Postflight Microbiological Results from 25 Space Shuttle Crews

1993-07-01
932139
Clinical-microbiological investigations are an important aspect of the crew health stabilization program. To ensure that space crews have neither active nor latent infections, clinical specimens, including throat and nasal swabs and urine samples, are collected at 10 days (L-10) and 2 days (L-2) before launch, and immediately after landing (L+0). All samples are examined for the presence of bacteria and fungi. In addition, fecal samples are collected at L-10 and examined for bacteria, fungi and parasites. This paper describes clinical-microbiological findings from 144 astronauts participating in 25 Space Shuttle missions spanning STS-26 to STS-50. The spectrum of microbiological findings from the specimens included 25 bacterial and 11 fungal species. Among the bacteria isolated most frequently were Staphylococcus aureus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Streptococcus agalactiae.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

Microbiology Operations and Facilities Aboard Restructured Space Station Freedom

1992-07-01
921213
With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.
Technical Paper

Effects of Refrigerating Preinoculated Vitek Cards on Microbial Physiology and Antibiotic Susceptibility

1992-07-01
921214
Reference cultures of 16 microorganisms obtained from the American Type Culture Collection and four clinical isolates were used in standardized solutions to inoculate 60 cards for each test strain. A set of three ID and three susceptibility cards was processed in the Vitek AutoMicrobic System (AMS) immediately after inoculation. The remaining cards were refrigerated at 4°C, and sets of six cards were removed and processed periodically for up to 17 days. The preinoculated AMS cards were evaluated for microorganism identification, percent probability of correct identification, length of time required for final result, individual substrate reactions, and antibiotic minimal inhibitory concentration (MIC) values. Results indicate that 11 of the 20 microbes tested withstood refrigerated storage up to 17 days without detectable changes in delineating characteristics. MIC results appear variable, but certain antibiotics proved to be more stable than others.
Technical Paper

Altered Immunological Response in Mice Subjected to Stress and Exposed to Fungal Spores

1992-07-01
921215
Space flight and related factors such as stress appear to have an adverse effect on astronauts' immune systems. The presence of potentially pathogenic microbes including several genera of fungi reported from spacecraft environment may be a cause of concern in such situations. In order to study the role of such organisms in causing opportunistic or allergic diseases in crewmembers, we have tried to develop an animal model. BALB/c mice were suspended upside down for varying periods of time to induce stress, and their lymphocyte functions were evaluated. These studies indicate that the stress resulted in lowered mitogen induced lymphocyte stimulation as represented by 3H-thymidine uptake. We have also studied the ability of these animals to respond to Aspergillus fumigatus spores. The results of the study clearly demonstrate a definite down-regulation in T-cell proliferation and a higher incidence of infection with A. fumigatus.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Two-Year Results

1991-07-01
911403
The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation.
Technical Paper

Disinfectants for Spacecraft Applications: An Overview

1991-07-01
911516
In-flight contamination control has been an important concern of NASA since the first manned missions. Previous experience has shown that uncontrolled growth of bacteria and fungi can have a detrimental effect on both the health of the crew and the proper operation of flight hardware. It is therefore imperative to develop a safe, effective method of microbial control. Spacecraft application dictates a more stringent set of requirements for biocide selection than is usually necessary for terrestrial situations. Toxicity of the biocide is the driving factor for disinfectant choice in spacecraft. This concern greatly reduces the number and types of chemical agents that can be used as disinfectants. Currently, four biocide candidates (hydrogen peroxide, quaternary ammonium compounds, iodine, glutaraldehyde) are being evaluated as potential surface disinfectants for Space Station Freedom.
Technical Paper

Microbial Growth and Physiology in Space: A Review

1991-07-01
911512
Weightlessness, cosmic radiation and other space flight related conditions may adversely impact the physiology and immune status of the crew. Since microorganisms will surely be present in space habitats, the effects of space on microbial metabolic and physiologic functions will depend upon environmental conditions, types of organisms, and the duration of the flight. Because humans will conduct long-duration space missions, space microbiology must address the effect of alterations in microbial function during space flight. Even innocuous microorganisms and endogenous flora may become etiologic agents for disease during long missions. The microbial population in the closed environments of spacecraft may also become a source of toxic metabolites or the biodegradation of materials. This paper reviews studies concerning microbial behavior in closed environments, simulated microgravity, and actual space flight.
Technical Paper

Space Station Freedom Viewed as a “Tight Building”

1990-07-01
901382
The Space Station Freedom (SSF), with a 30-year projected lifetime and a completely closed-loop Environmental Control and Life Support System (ECLSS), is perhaps the ultimate “Tight Building.” Recognizing the potential for the development of “Tight Building Syndrome” (TBS), and initiating actions to minimize possible TBS occurrences on SSF, requires a multidisciplinary approach that begins with appropriate design concerns and ends with detection and control measures on board SSF. This paper will present a brief summary of current experience with TBS on Earth. While many of the circumstances and methodologies garnered from investigating tight buildings on Earth are similar to those that might be encountered aboard SSF, the Station also presents a unique environment and a special set of constraints which will require an adaptation of previous protocols. Air contamination, including volatile organic compounds and microorganisms, will be the focus of the discussion.
Technical Paper

Immobilized Antimicrobials for the Enhanced Control of Microbial Contamination

2003-07-07
2003-01-2405
The active control of problematic microbial populations aboard spacecraft, and within future lunar and planetary habitats is a fundamental Advanced Life Support (ALS) requirement to ensure the long-term protection of crewmembers from infectious disease, and to shield materials and equipment from biofouling and biodegradation. The development of effective antimicrobial coatings and materials is an important first step towards achieving this goal and was the focus of our research. A variety of materials were coated with antibacterial and antifungal agents using covalent linkages. Substrates included both granular media and materials of construction. Granular media may be employed to reduce the number of viable microorganisms within flowing aqueous streams, to inhibit the colonization and formation of biofilms within piping, tubing and instrumentation, and to amplify the biocidal activity of low aqueous iodine concentrations.
X