Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Technical Paper

Modeling Study of the Battery Pack for the Electric Conversion of a Commercial Vehicle

2021-09-05
2021-24-0112
Many aspects of battery electric vehicles are very challenging from the engineering point of view in terms of safety, weight, range, and drivability. Commercial vehicle engines are often subjected to high loads even at low speeds and this can lead to an intense increment of the battery pack temperature and stress of the cooling system. For these reasons the optimal design of the battery pack and the relative cooling system is essential. The present study deals with the challenge of designing a battery pack that satisfies both the conditions of lowest weight and efficient temperature control. The trade-off between the battery pack size and the electrical stress on the cells is considered. The electric system has the aim to substitute a 3.0 liters compression ignition engine mainly for commercial vehicles.
Journal Article

Using 2d Infrared Imaging for the Analysis of Non-Conventional Fuels Combustion in a Diesel Engine

2015-04-14
2015-01-1646
The common realization of the necessity to reduce the use of mineral sources is promoting the use of alternative fuels. Big efforts are being made to replace petroleum derivatives in the internal combustion engines (ICEs). For this purpose it is mandatory to evaluate the behavior of non-conventional fuels in the ICEs. The optical diagnostics have proven to be a powerful tool to analyze the processes that take place inside the engine. In particular, 2d imaging in the infrared range can reveal new details about the effect of the fuel properties since this technique is still not very common. In this work, a comparison between commercial diesel fuel and two non-conventional fuels has been made in an optically accessible diesel engine. The non-conventional fuels are: the first generation biofuel Rapeseed Methyl Ester (RME) and an experimental blend of diesel and a fuel with high glycerol content (HG).
Technical Paper

In-Cylinder Combustion Analysis by Flame Emission Spectroscopy of Transparent CR Diesel Engine

2003-03-03
2003-01-1112
Spectroscopic measurement and high speed visualization were used in single cylinder, four-stroke DI diesel engine, optically accessible. It was equipped with a four valves head and fully flexible electronic controlled ‘Common Rail’ injection system. The effect of pilot and main injection on combustion process was evaluated. Mixing formation, autoignition and soot formation process were analyzed by broadband ultraviolet-visible flame emission spectroscopy and high-speed digital imaging. The autoignition phase occurred near the tip of the jet and was characterized by strong presence of OH radicals for both investigated conditions The presence of C2 and OH radicals strongly characterized CR diesel combustion process during soot formation and evolution. In particular, high presence of OH concentration for the whole process from the autoignition to the soot formation and successive phases contributes to lower soot levels.
Technical Paper

Experimental and Numerical Characterization of Diesel Injection in Single-Cylinder Research Engine with Rate Shaping Strategy

2017-09-04
2017-24-0113
The management of multiple injections in compression ignition (CI) engines is one of the most common ways to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) is a technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

Diagnosis and Control of Advanced Diesel Combustions using Engine Vibration Signal

2011-04-12
2011-01-1414
Increasing demands on emissions reduction and efficiency encouraged a progressive introduction of cleaner combustion concepts. "Advanced" diesel combustions offer a high potential for simultaneous reduction of both NOx and soot within the engine through high inlet charge dilution and mixture homogenization. However, the potential benefits of these combustions in terms of emissions are counterbalanced by their high sensitivity to in-cylinder thermodynamic conditions. This sensitivity makes the engines require closed loop combustion control with real-time information about combustion quality. The parameter widely considered as the most important for the evaluation of the combustion quality in internal combustion engines is the cylinder pressure. However, this kind of measure involves an intrusive approach to the cylinder, expensive sensors and a special mounting process.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
Technical Paper

Use of Vibration Signal for Diagnosis and Control of a Four-Cylinder Diesel Engine

2011-09-11
2011-24-0169
In order to meet the stricter and stricter emission regulations, cleaner combustion concepts for Diesel engines are being progressively introduced. These new combustion approaches often requires closed loop control systems with real time information about combustion quality. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine block vibration signal and several authors tried to reconstruct the pressure cycle on the basis of information coming from accelerometers mounted on engine block. This paper proposes a method, based on the analysis of the engine vibration signal, for the diagnosis of combustion process in a Diesel engine.
Technical Paper

Reconstruction of In-Cylinder Pressure in a Diesel Engine from Vibration Signal Using a RBF Neural Network Model

2011-09-11
2011-24-0161
This study aims at building an efficient and robust radial basis function (RBF) artificial neural network (ANN), to reconstruct the in-cylinder pressure of a diesel engine starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. The RBF network is trained using measurements from different engine operating conditions. Training data are composed of time series from the accelerometer and corresponding measured in-cylinder pressure signals. The RBF network is then validated using data not included in training and the results show good correspondence between measured and reconstructed pressure signal. Various network parameters are used to optimize the network quality.
Technical Paper

IR Imaging of Premixed Combustion in a Transparent Euro5 Diesel Engine

2011-09-11
2011-24-0043
In the present paper, infrared (IR) measurements were performed in order to study the development of injection and combustion in a transparent Euro 5 diesel engine operating in premixed mode. An elongated single-cylinder engine equipped with the multi-cylinder head of commercial passenger car and with common rail (CR) injection system, respectively, was used. A sapphire window was set in the bottom of the combustion chamber, and a sapphire ring was placed between the head and the top of the cylinder line. Measurements were carried out through both accesses by a new high-speed infrared (IR) digital imaging system obtaining information that was difficult to achieve by the conventional UV-visible camera. IR camera was able to detect the emitted light in the wavelength range 1.5-5 μm that is relevant for the emission bands of CO₂ and H₂O. The evaporation phase of pre and main injection, and subsequent combustion evolution were analyzed.
Technical Paper

Towards On-Line Prediction of the In-Cylinder Pressure in Diesel Engines from Engine Vibration Using Artificial Neural Networks

2013-09-08
2013-24-0137
This study aims at building efficient and robust artificial neural networks (ANN) able to reconstruct the in-cylinder pressure of Diesel engines and to identify engine conditions starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. In this view, the artificial neural network is meant to be efficient in terms of response time, i.e. fast enough for on-line use. In addition, robustness is sought in order to provide flexibility in terms of operation parameters. Here we consider a feed-forward neural network based on radial basis functions (RBF) for signal reconstruction, and a feed-forward multi-layer perceptron network with tan-sigmoid transfer function for signal classification. The networks are trained using measurements from a three-cylinder real engine for various operating conditions.
Technical Paper

Optical Investigation of Injection and Combustion Phases of a Fouled Piezoelectric Injector in a Transparent CR Diesel Engine

2013-04-08
2013-01-1591
This study was conducted to determine the effects of the fouling process on the piezoelectric injectors in a transparent common-rail diesel engine. Piezoelectric injectors are characterized by a ceramic actuator that can dilate or retract when it receives a pulse of current. The piezo element controls a valve, which creates an imbalance in the pressure that is exerted at each end of the needle, causing the needle rising or closing. Two same model injectors were tested; one was new and the other one was fouled on a vehicle. The aim of the experimental investigation was to evaluate the performance of a new and a fouled piezoelectric injector in terms of injection and flame evolution. It was evaluated how the nozzle carbon deposits affect the injection quantity and combustion. The experimental apparatus was a single-cylinder research engine equipped with a Euro 5 multi-cylinder head. A second-generation common rail injection system and 6-hole piezoelectric injectors were used too.
Technical Paper

Chemical and Physical Characteristics of Organic Particulate Matter from Exhaust After-Treatment System of Euro 6 Diesel Engine Operating at Full Load

2019-09-09
2019-24-0053
The current legislation does not take into account the limitation of sub 23 nm particles from engine. Nevertheless, the Common Rail Diesel engine emits a large number of nanoparticle, solid and volatiles, that are very dangerous for human health. In this contest, the challenge of the “dieper EU project” is to apply advanced technologies for exhaust after-treatment to existing diesel engines and to optimize the characteristics of a new generation of engines with regards to emissions, fuel consumption and drivability. Aim of the present paper is to provide useful information for the development of the after-treatment system that will have to fulfill Euro6 further steps. In order to characterize the chemical and physical nature of Particulate Matter emitted from Euro 6b Medium Duty diesel engine, the pollutants were collected and analyzed: from engine-out, downstream of the particulate filter (DPF), and at the exit of a selective catalytic reactor (SCR).
Journal Article

Real Time Prediction of Particle Sizing at the Exhaust of a Diesel Engine by Using a Neural Network Model

2017-09-04
2017-24-0051
In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
Technical Paper

Assessment of the New Features of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector by Means of Engine Performance Characterization and Spray Visualization

2018-09-10
2018-01-1697
The application of more efficient compression ignition combustion concepts requires advancement in terms of fuel injection technologies. The injector nozzle is the most critical component of the whole injection system for its impact on the combustion process. It is characterized by the number of holes, diameter, internal shape, and opening angle. The reduction of the nozzle hole diameter seems the simplest way to promote the atomization process but the number of holes must be increased to keep constant the injected fuel mass. This logic has been applied to the development of a new generation of injectors. First, the tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate. The vertical movement of the needle generates an annulus area for the fuel delivery on 360 degrees, so controlling the atomization as a function of the vertical plate position.
Technical Paper

MEMS Application to Monitor the In-Cylinder Pressure of a Marine Engine

2023-08-28
2023-24-0023
The transport of goods and people by sea, today, must meet the need to reduce the consumption of fuel oil. In addition, it has to ensure operational reliability and vessel availability, to reduce maintenance costs and comply with emission legislation. To this end, it is necessary to apply a marine engine combustion control system already widely used in engines for land transport. This will allow the ship's engines to operate reliably and in compliance with the best performance for which it was designed. The combustion control could also ensure a more balanced operation of the cylinders and reduce the torsional vibrations of the entire engine, as well as the management of the engine according to the adopted fuel: diesel, dual fuel, methanol, ammonia. Generally, the control of combustion in engines is carried out through the use of pressure sensors that face directly into the combustion chamber.
X