Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Three-Year-Old Child Out-Of-Position Side Airbag Studies

1999-10-10
99SC03
A series of twenty-nine tests was completed by conducting static deployment of side airbag systems to an out-of-position Hybrid III three-year-old dummy. Mock-ups (bucks) of vehicle occupant compartments were constructed. The dummy was placed in one of four possible positions for both door- and seat-mounted side airbag systems. When data from each type of position test were combined for the various injury parameters it was noted that the head injury criteria (HIC) were maximized for head and neck tests, and the chest injury parameters were maximized for the chest tests. For the neck injury parameters, however, all of the test positions produced high values for at least one of the parameters. The study concluded the following. Static out-of- position child dummy side airbag testing is one possible method to evaluate the potential for injury for worst-case scenarios. The outcome of these tests are sensitive to preposition and various measurements should be made to reproduce the tests.
Technical Paper

Thoracic Biomechanics with Air Bag Restraint

1993-11-01
933121
The objective of the present study was to determine the biomechanics of the human thorax in a simulated frontal impact. Fourteen unembalmed human cadavers were subjected to deceleration sled tests at velocities of nine or 13 m/s. Air bag - knee bolster, air bag - lap belt, and air bag - three-point belt restraint systems were used with the specimen positioned in the driver's seat. Two chest bands were used to derive the deformation patterns at the upper and lower thoracic levels. Lap and shoulder belt forces were recorded with seatbelt transducers. After the test, specimens were evaluated using palpation, radiography, and a detailed autopsy. Thoracic trauma was graded according to the Abbreviated Injury Scale based on autopsy findings. Peak thoracic deformations were normalized with respect to the initial chest depth to facilitate comparison between the specimens.
Technical Paper

Thoracic Deformation Contours in a Frontal Impact

1991-10-01
912891
The objective of the study was to document the thoracic deformation contours in a simulated frontal impact. Unembalmed human cadavers and the Hybrid III anthropomorphic manikins were tested. Data from the newly developed External Peripheral Instrument for Deformation Measurement (EPIDM) was used to derive deformation patterns at upper and lower thoracic levels. Deceleration sled tests were conducted on three-point belt restrained surrogates positioned in the driver's seat (no steering assembly) using a horizontal impact test sled at velocities of approximately 14.0 m/s. Lap and shoulder belt forces were recorded with seat belt transducers. The experimental protocol included a Hybrid III manikin experiment followed by the human cadaver test. Both surrogates were studied under similar input and instrumentation conditions, and identical data acquisition and analysis procedures were used. All six testedcadavers demonstrated multiple bilateral rib fractures.
Technical Paper

Kinematic and Anatomical Analysis of the Human Cervical Spinal Column Under Axial Loading

1989-10-01
892436
The patho-anatomic alterations due to vertical loading of the human cervical column were documented and correlated with biomechanical kinematic data. Seven fresh human cadaveric head-neck complexes were prepared, and six-axis load cells were placed at the proximal and distal ends of the specimens to document the gross biomechanical response. Retroreflective markers were placed on bony landmarks of vertebral bodies, articular facets, and spinous processes along the entire cervical column. Targets were also placed on the occiput and arch of C1. The localized movements of these markers were recorded using a video analyzer during the entire loading cycle. Pre-test two-dimensional, and three-dimensional computerized tomography (CT), and plane radiographs were taken. The specimens were loaded to failure using an electrohydraulic testing device at a rate of 2 mm/s.
Technical Paper

Tractor Induced Wheel Runover Injuries

1994-09-01
941728
In the present investigation a tractor wheel runover accident was simulated to obtain biomechanical information relating to mechanism of injury. Twelve cadaver porcine specimens were runover with the right front wheel of a tractor. Specimens were placed on a six-axis force plate and thorax contours were recorded temporally. Results indicated up to 68% compression of the chest occurred during the runover event. The shear force in the direction of travel was a significant factor in the type of fractures that occurred to the rib cage. Pathology determined from x-ray revealed multiple fractures per rib in the area directly below the path of the tire. Autopsy evaluation revealed soft tissue contusion on the left side in the area of wheel path. There was often extra blood in the pericardial space and examination of the brain showed petechial hemorrhaging subdurally.
Technical Paper

Biomechanical Tolerance of the Cranium

1994-09-01
941727
The objective of the study was to investigate the biomechanical response of the intact cranium. Unembalmed human cadavers were used in the study. The specimens were transected at the base of the skull leaving the intracranial contents intact; x-ray and computed tomography (CT) scans were obtained. They were fixed in a specially designed frame at the auditory meatus level and placed on the platform of an electrohydraulic testing device via a six-axis load cell. Following radiography, quasistatic loading to failure was applied to one of the following sites: frontal, vertex, parietal, temporal, or occipital. Retroreflective targets were placed in two mutually orthogonal planes to record the localized temporal kinematics. Applied load and piston displacement, and the output generalized force (and moment) histories were recorded using a modular digital data acquisition system. After the test, x-ray and CT images were obtained, and defleshing was done.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
Technical Paper

Experimental Study of Blast-Induced Traumatic Brain Injury Using a Physical Head Model

2009-11-02
2009-22-0008
This study was conducted to quantify intracranial biomechanical responses and external blast overpressures using physical head model to understand the biomechanics of blast traumatic brain injury and to provide experimental data for computer simulation of blast-induced brain trauma. Ellipsoidal-shaped physical head models, made from 3-mm polycarbonate shell filled with Sylgard 527 silicon gel, were used. Six blast tests were conducted in frontal, side, and 45° oblique orientations. External blast overpressures and internal pressures were quantified with ballistic pressure sensors. Blast overpressures, ranging from 129.5 kPa to 769.3 kPa, were generated using a rigid cannon and 1.3 to 3.0 grams of pentaerythritol tetranitrate (PETN) plastic sheet explosive (explosive yield of 13.24 kJ and TNT equivalent mass of 2.87 grams for 3 grams of material).
Technical Paper

A Finite Element Model of Region-Specific Response for Mild Diffuse Brain Injury

2009-11-02
2009-22-0007
It is well known that rotational loading is responsible for a spectrum of diffuse brain injuries spanning from concussion to diffuse axonal trauma. Many experimental studies have been performed to understand the pathological and biomechanical factors associated with diffuse brain injuries. Finite element models have also been developed to correlate experimental findings with intrinsic variables such as strain. However, a paucity of studies exists examining the combined role of the strain-time parameter. Consequently, using the principles of finite element analysis, the present study introduced the concept of sustained maximum principal strain (SMPS) criterion and explored its potential applicability to diffuse brain injury. An algorithm was developed to determine if the principal strain in a finite element of the brain exceeded a specified magnitude over a specific time interval.
Technical Paper

Region-Specific Deflection Responses of WorldSID and ES2-re Devices in Pure Lateral and Oblique Side Impacts

2011-11-07
2011-22-0013
The objective of this study was to determine region-specific deflection responses of the WorldSID and ES2-re devices under pure lateral and oblique side impact loading. A modular, anthropometry-specific load wall was used. It consisted of the Shoulder, Thorax, Abdomen, superior Pelvis, and inferior Pelvis plates, termed the STAPP load wall design. The two devices were positioned upright on the platform of a bench seat, and sled tests were conducted at 3.4, 6.7, and 7.5 m/s. Two chestbands were used on each dummy at the thoracic and abdominal regions. Internal sensors were also used. Effective peak deflections were obtained from the chestband contours. Based on the preselected lateral-most point/location on the pretest contour, “internal sensor-type” peak deflections were also obtained using chestband contours. In addition, peak deflection data were obtained from internal sensor records.
Technical Paper

Thoraco-Abdominal Deflection Responses of Post Mortem Human Surrogates in Side Impacts

2012-10-29
2012-22-0002
The objective of the present study was to determine the thorax and abdomen deflections sustained by post mortem human surrogate (PMHS) in oblique side impact sled tests and compare the responses and injuries with pure lateral tests. Oblique impact tests were conducted using modular and non-modular load-wall designs, with the former capable of accommodating varying anthropometry. Tests were conducted at 6.7 m/s velocity. Deflection responses from chestbands were analyzed from 15 PMHS tests: five each from modular load-wall oblique, non-modular load-wall oblique and non-modular load-wall pure lateral impacts. The thorax and abdomen peak deflections were greater in non-modular load-wall oblique than pure lateral tests. Peak abdomen deflections were statistically significantly different while the upper thorax deflections demonstrated a trend towards significance.
Technical Paper

Oblique Lateral Impact Biofidelity Deflection Corridors from Post Mortem Human Surrogates

2013-11-11
2013-22-0016
The objective of the study was to determine the thorax and abdomen deflection-time corridors in oblique side impacts. Data were analyzed from Post Mortem Human Surrogate (PMHS) sled tests, certain aspects of which were previously published. A modular and scalable anthropometry-specific segmented load-wall system was fixed to the platform of the sled. Region-specific forces were recorded from load cells attached to the load-wall plates. The thorax and abdomen regions were instrumented with chestbands, and deflection contours were obtained. Biomechanical responses were processed using the impulse-momentum normalization method and scaled to the mid-size male mass, 76-kg. The individual effective masses of the thorax and abdomen were used to determine the scale factors in each sled test, thus using the response from each experiment. The maximum deflections and their times of attainments were obtained, and mean and plus minus one standard deviation corridors were derived.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Response Corridors of Human Surrogates in Lateral Impacts

2002-11-11
2002-22-0017
Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean ± one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.
Technical Paper

Experimental Determination of Adult and Pediatric Neck Scale Factors

2002-11-11
2002-22-0020
The purpose of this study was to determine scale factors for small, mid-size and large adults using a caprine model. In a previous study conducted in our lab, scaling relationships were developed to define cervical spine tolerance values of children using caprine specimens. In that study, tolerances were normalized with respect to an average adult. Because airbag-related injuries are associated with out-of-position children and small adult females, additional experimental data are needed to better estimate human tolerance. In the present study, cervical spine radiographs from the 5th, 50th and 95th percentile human adults were used to determine vertebral body heights for small, mid-size and large anthropometries. Mean human vertebral body heights were computed for each anthropometry and were normalized with respect to mid-size anthropometry.
Technical Paper

Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis

2014-11-10
2014-22-0005
During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine.
Technical Paper

Lower Cervical Spine Loading in Frontal Sled Tests Using Inverse Dynamics: Potential Applications for Lower Neck Injury Criteria

2010-11-03
2010-22-0008
Lower cervical spine injuries are more common in survivors of motor vehicle crashes sustaining neck trauma. Injury criteria are determined using upper neck loads in dummies although a lower neck load cell exists. Due to a paucity of lower neck data from post mortem human subject (PMHS) studies, this research was designed to determine the head-neck biomechanics with a focus on lower neck metrics and injuries. Sixteen frontal impact tests were conducted using five belted PMHS. Instrumentation consisted of a pyramid-shaped nine accelerometer package on the head, tri-axial accelerometer on T1, and uniaxial accelerometer on the sled. Three-dimensional kinematics of the head-neck complex were obtained using a 20-camera high-speed motion analysis system. Testing sequence was: low (3.6 m/s), medium (6.9 m/s), repeat low, and high (15.8 m/s) velocities. Trauma evaluations were made between tests. Testing was terminated upon confirmation of injuries.
Technical Paper

Mechanisms and Factors Involved in Hip Injuries During Frontal Crashes

2001-11-01
2001-22-0020
This study was conducted to collect data and gain insights relative to the mechanisms and factors involved in hip injuries during frontal crashes and to study the tolerance of hip injuries from this type of loading. Unembalmed human cadavers were seated on a standard automotive seat (reinforced) and subjected to knee impact test to each lower extremity. Varying combinations of flexion and adduction/abduction were used for initial alignment conditions and pre-positioning. Accelerometers were fixed to the iliac wings and twelfth thoracic vertebral spinous process. A 23.4-kg padded pendulum impacted the knee at velocities ranging from 4.3 to 7.6 m/s. The impacting direction was along the anteroposterior axis, i.e., the global X-axis, in the body-fixed coordinate system. A load cell on the front of the pendulum recorded the impact force. Peak impact forces ranged from 2,450 to 10,950 N. The rate of loading ranged from 123 to 7,664 N/msec. The impulse values ranged from 12.4 to 31.9 Nsec.
Technical Paper

Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral ImpactTests Using Chestbands

2015-11-09
2015-22-0001
While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Three-point belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given.
X