Refine Your Search

Topic

Search Results

Technical Paper

Computer Simulation of Water Reclamation Processors

1991-07-01
911507
A step in the development of advanced regenerative life support systems is to produce simulation models to guide experimentation and hardware development. This paper discuses the development of detailed simulation models of water reclamation processors using the ASPEN PLUS™ simulation program. Individual models have been developed for Vapor Compression Distillation (VCD), Vapor Phase Catalytic Ammonia Removal (VPCAR) and Supercritical Water Oxidation (SCWO). This paper outlines the methodology which is used to complete this work and discusses the insights which are gained by this type of model development. A discussion of how modeling predictions are used to direct future work in modeling and experimentation is also presented. The initial set of modeled processors were VCD, VPCAR, and SCWO. Future work will cover the modeling of other processors. These models will be linked to form subsystem level models, and evaluations will be performed on various configurations.
Technical Paper

Development and Testing of a Breadboard Compactor for Advanced Waste Management Designs

2007-07-09
2007-01-3267
Waste management is a vital function of spacecraft life support systems as it is necessary to meet crew health and safety and quality of life requirements. Depending on the specific mission requirements, waste management operations can include waste collection, segregation, containment, processing, storage and disposal. For the Crew Exploration Vehicle (CEV), addressing volume and mass constraints is paramount. Reducing the volume of trash prior to storage is a viable means to recover habitable volume, and is therefore a particularly desirable waste management function to implement in the CEV, and potentially in other spacecraft as well. Research is currently being performed at NASA Ames Research Center to develop waste compaction systems that can provide both volume and mass savings for the CEV and other missions.
Technical Paper

Microwave Enhanced Freeze Drying of Solid Waste

2007-07-09
2007-01-3266
A Microwave Enhanced Solid Waste Freeze Drying Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Operating under vacuum, microwave power provides the energy necessary for sublimation of ice contained within the waste. This water vapor is subsequently collected as relatively pure ice on a Peltier thermoelectric condenser as it travels en route to the vacuum pump. In addition to stabilization via dehydration, microwave enhanced Freeze Drying reduces the microbial population (∼90%) in the waste.
Technical Paper

Stability and reliability of biological reactors

1997-07-01
972549
Bioregenerative resource recovery components for Advanced Life Support systems will need to be reliable and stable for long duration space travel. Since 1989, bioregenerative life support research at the ALS Breadboard Project has examined processing of inedible crop residues in bioreactors for recovery of nutrients for replenishment of crop hydroponic solutions. Bioreactor operation has been reliable as demonstrated by continuous operation for up to 418 days with long periods of steady state conditions. Bioreactors have demonstrated stability following unplanned, non-lethal perturbations in pH, temperature, dissolved oxygen, and inedible residue supply. In each instance, a rapid return to steady state conditions was observed.
Technical Paper

Biomass Conversion to Pumpable Slurries

1998-07-13
981757
The inedible portion of plant biomass in closed regenerative life support systems must be reprocessed producing recyclable by-products such as carbon dioxide, sugars, and other useful organic species. High solids biomass slurries containing up to 27 wt% were successfully prepared in a stirred batch reactor and then pumped using a single piston valveless pump. Wheat straw, potato, and tomato crop residues were acid hydrolyzed using 1.2 wt% sulfuric acid at 180°C and 1.2 MPa for 0.75-1.5 hours. Viscosity for a 25 wt% acid hydrolyzed wheat straw emulsion (Bingham-plastic) was 6.5 centipoise at 3 cm/sec and 25°C.
Technical Paper

Waste Incineration for Resource Recovery in Bioregenerative Life Support Systems

1998-07-13
981758
Over the last three years, the University of Utah (UofU), NASA Ames Research Center (ARC), and Reaction Engineering International (REI) have been developing an incineration system for the regeneration of components in waste materials for long-term life support systems. The system includes a fluidized bed combustor and a catalytic flue gas clean up system. An experimental version of the incinerator was built at the UofU. The incinerator was tested and modified at ARC and then operated during the Phase III human testing at NASA Johnson Space Center (JSC) during 1997. This paper presents the results of the work at the three locations: the design and testing at UofU, the testing and modification at ARC, and the integration and operation during the Phase III tests at JSC.
Technical Paper

Bioprocessing Wheat Residues to Recycle Plant Nutrients to the JSC Variable Pressure Growth Chamber during the L/MLSTP Phase III Test

1998-07-13
981706
The KSC Breadboard Scale Aerobic Bioreactor (B-SAB) was used to bioprocess inedible wheat crop residues to provide recycled nutrients to support crop growth in the JSC Variable Pressure Growth Chamber (VPGC) as part of the 91 day JSC-Lunar/Mars Life Support Test Project Phase III. To meet the wheat nutrient demand at JSC, the KSCB-SAB was operated at both a higher loading rate (35 gdw L-1 compared with 20 gdw L-1) and at a slower retention time (21 days compared with 8 days) than we had used in previous bioreactor (continuous stirred tank reactor - CSTR) studies. The bioreactor operated for 19 weeks-8 weeks startup and steady state stabilization then 11 weeks of operation with the broth harvested weekly. Filtered broth was amended with nutrients and transported to JSC for integration into the VPGC wheat growth component of L/MLSTP Phase III. Biodegradation of JSC wheat residues was a constant 45% during steady state bioreactor operation, and similar to previous B-SAB runs.
Technical Paper

Increasing Degradation of Inedible Crop Residues During Composting by Addition of Simulated Human Solid Waste

1998-07-13
981610
NASA's Advanced Life Support Breadboard Project at Kennedy Space Center focuses on biological regeneration of essential commodities for long-term space missions. If plants are grown on these missions, roughly 50% of the biomass will be inedible. Composting can reduce the volume of inedible biomass, reduce levels of leachable soluble organics, and produce a mineral-rich leachate that can be used to provide nutrients to subsequent generations of plants. Other wastes will also be generated on space missions; co-composting of these wastes should increase the rate and extent of degradation and should assist in control of moisture content during composting. To investigate these assumptions, we added simulated human solid waste to freshly harvested inedible wheat biomass and composted the mixture for 21 days.
Technical Paper

Water Recovery from Wastes in Space Habitats-a Comparative Evaluation of SBIR Prototypes

2009-07-12
2009-01-2342
Water is of critical importance to space missions due to crew needs and the cost of supply. To control mission costs, it is essential to recycle water from all available wastes - both solids and liquids. Water recovery from liquid water wastes has already been accomplished on space missions. For instance, a Water Recycling System (WRS) is currently operational on the International Space Station (ISS). It recovers water from urine and humidity condensate and processes it to potable water specifications. However, there is more recoverable water in solid wastes such as uneaten food, wet trash, feces, paper and packaging material, and brine. Previous studies have established the feasibility of obtaining a considerable amount of water and oxygen from these wastes (Pisharody et al, 2002; Fisher et al, 2008; Wignarajah et al, 2008).
Technical Paper

Investigating the Partitioning of Inorganic Elements Consumed by Humans between the Various Fractions of Human Wastes - An Alternative Approach

2003-07-07
2003-01-2371
The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes.
Technical Paper

Considerations in Selection of Solid Waste Management Approaches in Long-Duration Space Missions

2002-07-15
2002-01-2476
Solid Waste Management (SWM) systems of current and previous space flight missions have employed relatively uncomplicated methods of waste collection, storage and return to Earth. NASA's long-term objectives, however, will likely include human-rated missions that are longer in both duration and distance, with little to no opportunity for re-supply. Such missions will likely exert increased demands upon all sub-systems, particularly the SWM system. In order to provide guidance to SWM Research and Technology Development (R&TD) efforts and overall system development, the establishment of appropriate SWM system requirements is necessary. Because future long duration missions are not yet fully defined, thorough mission-specific requirements have not yet been drafted.
Technical Paper

Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

2002-07-15
2002-01-2479
Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of mission requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements and planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process.
Technical Paper

Design and Operation of Laboratory-Scale Aerobic Composters

1997-07-01
972551
Regenerative life support systems are under development to reduce the need for resupply of essential commodities during long duration space missions. If higher plants are used to supply food, oxygen, and potable water, composters could be used to stabilize solid wastes, provide CO2 and nutrients to the plants, and achieve pathogen reduction. Small-scale aerobic composting was used successfully to degrade organic compounds in inedible potato biomass. Soluble nutrients were extracted from the compost at concentrations that supported seed germination. Further work is indicated to understand the inhibitory effects of some leachates. Future composter designs should allow improved performance through better instrumentation and process control.
Technical Paper

Results Summary of the Life Support and Habitation and Planetary Protection Workshop

2006-07-17
2006-01-2007
A workshop entitled the “Life Support & Habitation and Planetary Protection Workshop” was held in Houston, TX in April, 2005. The main objective of the workshop was to initiate communication, understanding, and a working relationship between the Life Support and Habitation1 (LSH) and Planetary Protection (PP) communities regarding the effect of the implementation of Mars human exploration PP policies on the Advanced Life Support2 (ALS), Advanced Extravehicular Activity (AEVA), and Advanced Environmental Monitoring and Control (AEMC) programs. This paper presents an overall summary of the workshop that includes workshop organization, objectives, starting assumptions, findings and recommendations. Specific result topics include the identification of knowledge and technology gaps, research and technology development (R&TD) needs, potential forward and back contaminants and pathways, mitigation alternatives, and PP requirements definition needs.
Technical Paper

Development and Testing of a Microwave Powered Solid Waste Stabilization and Water Recovery System

2006-07-17
2006-01-2182
A Microwave Powered Solid Waste Stabilization and Water Recovery Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Using microwave power, water present in the solid waste is selectively and rapidly heated. Liquid phase water flashes to steam and superheats. Hot water and steam formed in the interior of waste particles create an environment that is lethal to bacteria, yeasts, molds, and viruses. Steam contacts exposed surfaces and provides an effective thermal kill of microbes, in a manner similar to that of an autoclave. Volatilized water vapor is recovered by condensation.
Technical Paper

Simulated Human Feces for Testing Human Waste Processing Technologies in Space Systems

2006-07-17
2006-01-2180
Handling and processing human feces in space habitats is a major concern and needs to be addressed for the Crew Exploration Vehicle (CEV) as well as for future exploration activities. In order to ensure crew health and safety, feces should either be isolated in a dried form to prevent microbial activity, or be processed to yield a non-biohazardous product using a reliable technology. During laboratory testing of new feces processing technologies, use of “real” feces can impede progress due to practical issues such as safety and handling thereby limiting experimental investigations. The availability of a non-hazardous simulant or analogue of feces can overcome this limitation. Use of a simulant can speed up research and ensure a safe laboratory environment. At Ames Research Center, we have undertaken the task of developing human fecal simulants. In field investigations, human feces show wide variations in their chemical/physical composition.
Technical Paper

Particle Size Effect on Supercritical Water Oxidation-Polystyrene Beads

1994-06-01
941399
Advanced space life support systems, especially systems that include growing plants to produce food, require the recovery of resources - primarily carbon dioxide and water - from various hydrocarbon wastes. Supercritical water oxidation (SCWO) of wastes is one of several possible techniques for oxidizing waste organics to recover the carbon dioxide and water. Supercritical water oxidation has the advantages of fast kinetics, complete oxidation, and the minimization of undesirable side products. However, the SCWO process requires further development before the process can be implemented in space life systems. One of the SCWO development needs is in the area of destruction of insoluble solids - such as inedible biomass or human wastes. Insoluble solids have to be introduced into a SCWO reactor as particles, and it can be expected that the particle size of the solids will affect the rate of reaction.
Technical Paper

Development and Integration of a Breadboard-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

1995-07-01
951498
A Breadboard-Scale Aerobic Bioreactor (B-SAB) has been designed and integrated with the Kennedy Space Center's Biomass Production Chamber (BPC). The bioreactor utilizes a mixed microbial community to biodegrade inedible plant residues, a component of a Controlled Ecological Life Support System (CELSS) waste-stream. The continuously stirred tank reactor (120 L working volume) supports nutrient recycling and secondary food production experiments, and can process an influent with a solids loading as high as 50 g L-1. The volumetric oxygen mass transfer coefficient, kLa, is 0.013 s-1. Nutrient solution for BPC lettuce and wheat crops has been produced. Currently, B-SAB is supplying 80% of the nutrients for 10 m2 of potato plants in a continuous production experiment.
Technical Paper

Influence of Planetary Protection Guidelines on Waste Management Operations

2005-07-11
2005-01-3097
Newly outlined missions in the Vision for U.S. Space Exploration include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and increase the opportunity for back contamination. Therefore, it is advantageous to investigate the potential for wastes to remain on Mars after mission completion. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered “biomarkers” (i.e., indicators of life). If released to the planetary surface, these materials can potentially interfere with exobiology studies, disrupt any existent martian ecology and pose human safety concerns. Waste Management (WM) systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration.
Technical Paper

Incineration of Inedible Biomass in a Regenerative Life Support System - Developmental Efforts at NASA Ames Research Center

2000-07-10
2000-01-2282
Of the many competing technologies for resource recovery from solid wastes for long duration manned missions such as a lunar or Mars base, incineration technology is one of the most promising and certainly the most well developed in a terrestrial sense. An incinerator was used to recover and recycle part of the waste produced during the Early Human Testing Initiative Phase 3 (EHTI 3) at Johnson Space Center. The fluidized bed incinerator developed for the EHTI testing was a joint initiative between Ames Research Center, University of Utah and Johnson Space Center. Though in no way an optimized system at that time, the fluidized bed combustor fulfilled the basic requirements of a resource recovery system. Valuable data was generated and problem areas, technology development issues and future research directions were identified during the EHTI testing.
X