Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2006 - 2007

2007-07-09
2007-01-3099
The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2006 and February 2007 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2007-2008

2008-06-29
2008-01-2132
The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2007 and February 2008 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.
Technical Paper

International Space Station (ISS) United States (US) Laboratory Module Environmental Control and Life Support (ECLS) System Close-Out Process for Launch

2001-07-09
2001-01-2388
The International Space Station (ISS) United States Laboratory module has been under test for approximately two years in the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center (KSC) preparing for launch. Preparation activities for closing out the Environmental Control and Life Support (ECLS) system have included Closed Hatch testing to verify the capability of the life support equipment to support the crew, final manufacturing steps, and the close-out process itself. These activities were accomplished by an integrated Boeing and NASA team, located at the Johnson Space Center (Houston, Texas), Marshall Space Flight Center (Huntsville, Alabama) and Kennedy Space Center, Florida. On December 13, the Laboratory module hatches were sealed prior to loading into the Shuttle Orbiter payload bay for launch on February 7, 2001.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Equipment Failures, Causes, and Solutions February 2001 - February 2002

2002-07-15
2002-01-2495
The International Space Station (ISS) underwent a dramatic buildup in life support equipment since the delivery and activation of the U.S. Laboratory module in February 2001, followed by the Joint Airlock in July 2001. Since Laboratory activation, several Environmental Control and Life Support (ECLS) equipment failures have occurred. This paper addresses these failures, occurring through February 2002, and, where known, the root causes, with particular emphasis on probable micro-gravity causes are highlighted. Impact to overall ISS operations and proposed or accomplished fixes also are discussed.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events:February 2005 - 2006

2006-07-17
2006-01-2056
The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2005 and February 2006 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.
Technical Paper

International Space Station Environmental Control and Life Support System Design Overview Update

1997-07-01
972333
The International Space Station (ISS) program consists of three distinct phases. Phase 1 consists of the joint Shuttle-Mir missions. Phase 2 establishes the ISS initial research capability with a three person crew permanent presence. Phase 3 completes the assembly, establishing six person crew permanent presence with multiple International Partner (IP) research facilities. Phase 1 is nearing completion, while Phase 2 is in the subsystem delivery and element integration stage. This paper provides a status of the U.S. Environmental Control and Life Support (ECLS) system for Phases 2 and 3 of the ISS program, focusing on updates and changes in the past year.
Technical Paper

Space Station: Key Step in Developing Life Support Systems for Space Exploration

1994-06-01
941394
Future human space exploration missions present significant challenges for life support system (LSS) development. These life support systems will require incorporation of regenerative technologies to reduce or eliminate expendables and be low risk, demonstrating high reliability and long-term performance capability. A regenerative LSS for Space Station is a key step toward meeting these future space exploration requirements. In the development of the Space Station regenerative LSS, the challenges have been both technical and budgetary. Currently, the International Space Station Alpha (ISSA) program will consist of three Phases. Phase I will be MIR/Shuttle Orbiter flights with United States (US) crews attending to the various US flight experiments on-board the MIR. Phase II will consist mostly of Russian launched modules and the United States (US) Laboratory module. Phase III will launch the US Habitat module to implement US regenerative LSS.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events:February 2004 - 2005

2005-07-11
2005-01-2778
The International Space Station continues to build up and operate its life support equipment. Major events occurring between February 2004 and February 2005 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major events of the last year of ISS operation. Impact to overall station operations is discussed.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2002 - 2004

2004-07-19
2004-01-2383
The International Space Station continues to build up its life support equipment capability. Several ECLS equipment failures have occurred since Lab activation in February 2001. Major problems occurring between February 2001 and February 2002 were discussed in reference 1. Major problems occurring between February 2002 and February 2003 are discussed in this paper, as are updates from previously ongoing unresolved problems. This paper addresses failures, and root cause, with particular emphasis on likely micro-gravity causes. Impact to overall station operations and proposed and accomplished fixes will also be discussed.
Technical Paper

Development Status of Regenerable Solid Amine CO2 Control Systems

1985-07-01
851340
Recent development of the solid amine/water desorbed (SAWD) CO2 control system technology has resulted in two preprototype systems. The SAWD I system was developed under NASA Contract NAS9-13624 and is currently under test in the NASA Johnson Space Center, Crew Systems Division Advanced Environmental Control Systems (ECS) Laboratory. The SAWD II system is being developed at Hamilton Standard Division of United Technologies (HSD) under NASA Contract NAS9-16978. This paper reviews the development history of solid amine CO2 control systems and describes the SAWD I and SAWD II systems. In the development of the SAWD II system, special attention was given to reducing its power requirements and to designing the system to be compatible with zero-gravity operation. Energy saving features are discussed, and the zero-gravity solid amine canister test program and selected design are described.
Technical Paper

Test Results on Reuse of Reclaimed Shower Water - A Summary

1989-07-01
891443
A microgravity whole body shower and waste water recovery system were evaluated in three separate closed loop tests at NASA/JSC. These tests covered a period from August 1985 to June 1987 in which shower waste water was reclaimed and reused for showering. Test persons showered in a preprototype whole body shower following a protocol similar to that anticipated for the Space Station. Each test was performed by using different water recovery system technologies which included phase change distillation and two separate reverse osmosis processes. These were integrated with post-treatment for the final purification of the reclaimed water. The phase change, a preprototype Thermoelectric Hollow Fiber Membrane Evaporation Subsystem was used for the initial test with chemical pretreatment of the shower waste water input. A reverse osmosis dynamic membrane system was used for the second test and a 2-stage ultrafiltration/reverse osmosis system for the third test.
Technical Paper

Regenerative Life Support System Hardware Testing — A Summary

1986-07-14
860941
With the advent of the Space Station Program, regenerative Environmental Control and Life Support Systems (ECLSS) are being considered to minimize logistics requirements. In addition to the potential to improve system performance and reduce life-cycle costs, rationale for adopting regenerative techniques . is based on sixteen years of National Aeronautics and Space Administration (NASA) sponsored regenerative ECLSS hardware development. This technological progress has been obtained through the Space Station Preprototype (SSP) and the Regenerative Life Support Evaluation (RLSE) programs, and ongoing Advanced Preprototype subsystem development and testing. The SSP program focused on regenerative life support techniques to satisfy projected goals of long-duration earth orbital missions.
Technical Paper

Results on Reuse of Reclaimed Shower Water

1986-07-14
860983
A microgravity whole body shower (WBS) and a waste water recovery system (WWRS) were used in a closed loop test at the Johnson Space Center. The WWRS process involved chemical pretreatment, phase change distillation and post-treatment. A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem (TIMES) was used for distillation after pretreatment and the post-treatment was accomplished with activated carbon, mixed ion exchange resin beds and microbial check valve (MCV) iodine bactericide dispensing units. The purposes of this test were to evaluate a NASA approved Shuttle soap for whole body showering comfort; evaluate the effects of the shower water on the WBS and the TIMES; and evaluate purification qualities of the recovered water in a closed loop operation.
Technical Paper

Test Results of a Shower Water Recovery System

1987-07-01
871512
A shower test was conducted recently at NASA-JSC in which waste water was reclaimed and reused. Test subjects showered in a prototype whole body shower following a protocol similar to that anticipated for Space Station. The waste water was purified using reverse osmosis followed by filtration through activated carbon and ion exchange resin beds. The reclaimed waste water was maintained free of microorganisms by using both heat and iodine. This paper discusses the test results, including the limited effectiveness of using iodine as a disinfectant and the evaluation of a Space Station candidate soap for showering. In addition, results are presented on chemical and microbial impurity content of water samples obtained from various locations in the water recovery process.
X