Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Oxygen Production via Carbothermal Reduction of Lunar Regolith

2009-07-12
2009-01-2442
The Moon is composed of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material that can be processed to produce oxygen. One attractive method to extract oxygen from the lunar regolith is the carbothermal reduction process. This paper discusses recent development work conducted through the PILOT project under the NASA OPTIMA program. The OPTIMA test program utilizes a modular technology suite of ISRU excavation, oxygen extraction, oxygen storage, and oxygen distribution hardware sized to be consistent with the draft Constellation requirements for oxygen extraction from the regolith to support the early lunar outpost (1 MT O2/year).
Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

Controlling Lubricant-Derived Phosphorous Deactivation of the Three-Way Catalysts Part 2: Positive Environmental Impact of Novel ZDP Technology

2010-10-25
2010-01-2257
Prior technical work by various OEMs and lubricant formulators has identified lubricant-derived phosphorus as a key element capable of significantly reducing the efficiency of modern emissions control systems of gasoline-powered vehicles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ). However, measuring the exact magnitude of the detriment is not simple or straightforward exercise due to the many other sources of variation which occur as a vehicle is driven and the catalyst is aged ( 1 ). This paper, the second one in the series of publications, examines quantitative sets of results generated using various vehicle and exhaust catalyst testing methodologies designed to follow the path of lubricant-derived phosphorous transfer from oil sump to exhaust catalytic systems ( 1 ).
Journal Article

Investigation of Wheel Aerodynamic Resistance of Passenger Cars

2014-04-01
2014-01-0606
There are a number of numerical and experimental studies of the aerodynamic performance of wheels that have been published. They show that wheels and wheel-housing flows are responsible for a substantial part of the total aerodynamic drag on passenger vehicles. Previous investigations have also shown that aerodynamic resistance moment acting on rotating wheels, sometimes referred to as ventilation resistance or ventilation torque is a significant contributor to the total aerodynamic resistance of the vehicle; therefore it should not be neglected when designing the wheel-housing area. This work presents a numerical study of the wheel ventilation resistance moment and factors that affect it, using computational fluid dynamics (CFD). It is demonstrated how pressure and shear forces acting on different rotating parts of the wheel affect the ventilation torque. It is also shown how a simple change of rim design can lead to a significant decrease in power consumption of the vehicle.
Journal Article

Demonstration of a Compact Hydrogen Fuel Cell Power System for UAS Propulsion

2014-09-16
2014-01-2223
We have assembled and demonstrated a prototype power system that uses an innovative hydrogen generator to fuel an ultra-compact PEM fuel cell that is suitable for use in small unmanned aerial system (UAS) propulsion systems. The hydrogen generator uses thermal decomposition of ammonia borane (AB) to produce hydrogen from a very compact and lightweight package. An array of AB fuel pellets inside a low pressure container is activated sequentially to produce hydrogen on demand as it is consumed by the fuel cell. The fuel cell plant utilized in the power system prototype has been flown as part of several small UAS development programs and has logged hundreds of hours of flight time. The plant was designed specifically to be readily integrated with a range of hydrogen fueling subsystems and contains the balance of plant necessary to facilitate stand-alone operation. Based on results of these tests, we produced a conceptual design for a flight system.
Journal Article

Propulsion of Photovoltaic Cruiser-Feeder Airships Dimensioning by Constructal Design for Efficiency Method

2013-09-17
2013-01-2303
The European project MAAT (Multi-body Advanced Airship for Transport) is producing the design of a transportation system for transport of people and goods, based on the cruiser feeder concept. This project defined novel airship concepts capable of handling safer than in the past hydrogen as a buoyant gas. In particular, it has explored novel variable shape airship concepts, which presents also intrinsic energetic advantages. It has recently conduced to the definition of an innovative design method based on the constructal principle, which applies to large transport vehicles and allows performing an effective energetic optimization and an effective optimization for the specific mission.
Journal Article

Development of an Aerodynamic Analysis Methodology for Tractor-Trailer Class Heavy Commercial Vehicles

2013-09-24
2013-01-2413
An aerodynamic analysis methodology which makes efficient use of ANSA and FLUENT software's in the aerodynamic design of tractor-trailer class heavy commercial road vehicles is presented. The aerodynamic drag coefficient of the truck is used as the main control parameter to evaluate the performance of the methodology. Analysis methodology development activities include determining optimal FLUENT software analysis parameters for the defined problem (RANS based turbulence models, wall boundary layer models, solution schemes) and the necessary ANSA mesh generation parameters (boundary layer number and growth rate, wall surface mesh resolution, total mesh resolution). Proposed methodology is first constructed based on CFD simulations for the zero-degree yaw angle case of the 1/8 sized GCM geometry. The present results are within 1% of the experimental data.
Technical Paper

Research on Locked Wheel Protection Function of Aircraft Brake System

2021-10-11
2021-01-1269
Locked wheel protection is an important part of antiskid control for aircraft brake control system. Locked wheel protection compares the wheel speed of two or more wheels, if one of the wheels is too slow, locked wheel protection releases the brake pressure on the slow wheel. This work aims to study the control logic for locked wheel protection. Locked wheel protection control logic consists of 3 key factors: paired wheels, active threshold and inhibit velocity. Focus on comparison different options of these 3 factors, all aspects of control logic for locked wheel protection had been expounded in this study. Simulation and calculation analysis is applied for different locked wheel strategies to evaluate the effect. One conclusion is that the greatest wheel speed of the wheel under control shall be set as a reference speed for locked wheel protection. This study provide the basis to design a proper locked wheel protection function of aircraft brake control system.
Technical Paper

Lean-Burn Stratified Alcohol Fuels Engines of Power Density up to 475 kW/Liter Featuring Super-Turbocharging, Rotary Valves, Direct Injection, and Jet Ignition

2020-09-15
2020-01-2036
Direct injection (DI) and jet ignition (JI), plus assisted turbocharging, have been demonstrated to deliver high efficiency, high power density positive ignition (PI) internal combustion engines (ICEs) with gasoline. Peak efficiency above 50% and power density of 340 kW/liter at the 15,000 rpm revolution limiter working overall λ=1.45 have been report-ed. Here we explore the further improvement in power density that may be obtained by replacing gasoline with ethanol or methanol, thanks to the higher octane number and the larger latent heat of vaporization, which translates in an increased resistance to knock, and permits to have larger compression ratios. Results of simulations are proposed for a numerical engine that uses rotary valves rather than poppet valves, while also using mechanical, rather than electric, assisted turbocharging. While with gasoline, the power density is 410-420 kW/liter, the use of oxygenates permits to achieve up to 475 kW/liter working with methanol.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Technical Paper

Use of Butanol Blend Fuels on Diesel Engines - Effects on Combustion and Emissions

2020-04-14
2020-01-0333
Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. Like ethanol, butanol can be produced as a biomass-based renewable fuel or from fossil sources. In the research project, DiBut (Diesel and butanol) addition of butanol to Diesel fuel was investigated from the points of view of engine combustion and of influences on exhaust aftertreatment systems and emissions. One investigated engine (E1) was with emission class “EU Stage 3A” for construction machines, another one, engine (E2) was HD Euro VI. The most important findings are: with higher butanol content, there is a lower heat value of the fuel and there is lower torque at full load.
Journal Article

Low-cost Automation for Prepreg Handling - Two Cases from the Aerospace Industry

2015-09-15
2015-01-2606
With an increased use of composite materials within the aerospace industry follows a need for rational and cost-effective methods for composite manufacturing. Manual operations are still common for low to medium manufacturing volumes and complex products. Manual operations can for example be found in material handling, when picking prepreg plies from a cutter table and stacking them to form a plane laminate in preparation for a subsequent forming operation. Stacking operations of this kind often involves a great number of different ply geometries and removal of backing paper and other protecting materials like plastic. In this paper two different demonstrator cells for automated picking of prepreg plies and stacking of plane laminates are presented. One demonstrator is utilizing a standard industrial robot and an advanced end-effector to handle the ply variants. The other demonstrator is using a dual arm robot which allow for simpler end-effector design.
Journal Article

The Compatibility Study of Aircraft Fuel Tank Elastomers with Synthesized Paraffinic Kerosine and its Blends

2014-09-01
2014-01-9001
The synthetic paraffinic kerosine (SPK) produced via HEFAs is of great interest for civil aviation industry as it exhibits an excellent thermal oxidative stability with significantly lower particulate matter emission. However, due to its aromatic free characteristics, the widespread use of SPK is limited by its compatibility with non-metal materials such as fuel tank elastomers. In this research the compatibility of SPK and its blends with widely used aircraft fuel tank elastomers were systematically studied. Experimental results demonstrated the volume swellability of all selected materials showed a linear relationship with volume percentage of No.3 jet fuel in SPK blend. The increase of volume percentage of No.3 jet fuel in the SPK blend increased volume swellability for all materials except fluorosilicone gasket.
Journal Article

High Temperature Multilayer Ceramic Capacitors

2009-11-10
2009-01-3124
High temperature power electronics have become a vital aspect of future designs of compact power converters for applications including power conditioning and distributed motor/actuator controls. However, the development of high temperature capacitors had lagged far behind other system components (e.g. semiconductor switches and that can operate at temperature >200°C). The performance of these systems would benefit significantly from components and packaging designed and optimized for high temperature (200°C to 400°C) under generally harsh environmental conditions. In this paper it will be demonstrated that high temperature materials can be successfully fabricated into multilayer ceramic capacitors (MLCC). The properties of various capacitors having application range 200∼500°C will be presented.
Journal Article

Off-Gassing and Particle Release by Heated Polymeric Materials

2008-06-29
2008-01-2090
Polymers are one of the major constituents in electrical components. A study investigating pre-combustion off-gassing and particle release by polymeric materials over a range of temperatures can provide an understanding of thermal degradation prior to failure which may result in a fire hazard. In this work, we report simultaneous measurements of pre-combustion vapor and particle release by heated polymeric materials. The polymer materials considered for the current study are silicone and Kapton. The polymer samples were heated over the range 20 to 400°C. Response to vapor releases were recorded using the JPL Electronic Nose (ENose) and Industrial Scientific's ITX gas monitor configured to detect hydrogen chloride (HCl), carbon monoxide (CO) and hydrogen cyanide (HCN). Particle release was monitored using a TSI P-TRAK particle counter.
Journal Article

Test of SOI 555 Timer with High Temperature Packaging

2008-11-11
2008-01-2882
The thick oxide layer of silicon-on-insulator (SOI) devices significantly reduces the junction leakage current at elevated temperatures compared to similar Si devices, resulting in an elevated maximum operating temperature. The maximum operating temperature, specified by manufacturers, of commercial SOI devices/circuits with conventional packaging is usually 225°C. It is important to understand the performance and de-ratings of these SOI circuits at temperatures above 225°C without the temperature limit imposed by commercial packaging technology. This work tested a low frequency square-wave oscillator based on an SOI 555 Timer with a special high temperature ceramic packaging technology from room temperature to 375°C. The timer die was attached to a 96% aluminum oxide substrate with high temperature durable gold (Au) thick-film metallization, and interconnected with Au wires.
Journal Article

Combined Analysis of Cooling Airflow and Aerodynamic Drag for a Class 8 Tractor Trailer Combination

2011-09-13
2011-01-2288
Long haul tractor design in the future will be challenged by freight efficiency standards and emission legislations. Along with any improvements in aerodynamics, this will also require additional cooling capacity to handle the increased heat rejection from next generation engines, waste heat recovery and exhaust gas recirculation systems. Fan engagement will also have to be minimized under highway conditions to maximize fuel economy. These seemingly contradictory requirements will require design optimization via analysis techniques capable of predicting both the aerodynamic drag and engine cooling airflow accurately. This study builds on previous work [1] using a Lattice Boltzmann based computational method on a Volvo VNL tractor trailer combination. Simulation results are compared to tests conducted at National Research Council (NRC) Canada's wind tunnel.
X