Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Development of Lightweight Vehicle using Aluminum Space Frame Body

2000-06-12
2000-05-0261
Due to the environmental problem like as CO2 emission, energy problem and etc., many car makers are trying to reduce the weight of the vehicle. The most effective way to reduce the weight of vehicle is to use lighter materials, aluminum, magnesium, plastics. And weight reduction of body is more effective than the others. There are two kinds of lightweight body, aluminum monocoque body and aluminum space frame body. Aluminum space frame body has many advantages from the space frame structure and the use of lighter materials. So, many car makers are developing aluminum space frame body and in mass production of some kinds of car, eg. Sports car, electric vehicle and etc. For these reason, we have developed and aluminum space frame body vehicle with ATOZ model base. Using FEM analysis, we designed sections of extrusions(6061) and fabricated spaceframe skeleton by ARC welding.
Technical Paper

Impact Protection With the “Airstop” Restraint System

1964-10-21
640845
Development is progressing of an improved airbag restraint system for passenger vehicles which we call “airstop.” It consists of an airbag in front of the chest, an airbag in front of the feet and under the seat, and an inflated airseat. This system has an impact load transmission to the subject of one-third or less of the vehicle longitudinal or vertical loads. The experimental work leading to the airstop design is reviewed, with acceleration data presented for vertical and inclined drops of the initial full-length airbag system and an astronaut airbag restraint system, swing and drop impacts of airstop systems, and a DC-7 crash test of a chest and foot airbag system. The airstop system is designed for automatic deflation of the bags and the seats after a crash, greatly facilitating fire escape from the aircraft. The weight of the airseat system is less than the weight of present seats.
Technical Paper

Lunar Dust Cloud Characterization in a Gravitational Settling Chamber Experiencing Zero, Lunar, Earth and 1.8-g Levels

2009-07-12
2009-01-2357
In order to study dust propagation and mitigation techniques, an inertial separation and gravitational settling experiment rig was constructed and used for experimental work in reduced gravity aircraft flights. The first experimental objective was to test dust filtration by a cyclone separator in lunar gravity. The second objective was to characterize dust flow and settling in lunar gravity in order to devise more comprehensive dust mitigation strategies. A settling channel provided a flow length over which particles settled out of the air flow stream. The experimental data provides particle quantity and size distribution, and a means of verifying numerical predictions.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

Regolith Activation on the Lunar Surface and its Ground Test Simulation

2009-07-12
2009-01-2337
Activation of the surfaces of lunar regolith particles can occur through interactions with solar electromagnetic radiation, solar and galactic particle radiation and micrometeoroid bombardment. An attempt has been made to quantify the relative importance of each of those effects. The effects of these activated surfaces may be to enhance the adhesion and toxicity of the particles. Also key to the importance of activation is the lifetimes of activated states in various environments which is controlled by their passivation rate as well as their activation rate. Although techniques exist to characterize the extent of activation of particles in biological system, it is important to be able to quantify the activation state on the lunar surface, in ground-test vacuum systems, and in habitat atmospheres as well.
Technical Paper

Review of Methods for Characterization of Microsize Dust Particles

2009-07-12
2009-01-2335
Lunar dust consists of particles ranging from sub-micrometer to millimeter-size particles. Characterization of these particles is essential to understanding their interactions and to developing technologies for mitigating the adverse effects of the dust on the performance of systems and hardware for extended duration manned missions on the moon. Many advances and new developments have been made in established characterization techniques for particles in this size range. It is now possible to thoroughly characterize particles from 0.1 nm to 1 mm size. Some of these recent developments in particle characterization techniques are described.
Technical Paper

A Novel Testing Protocol for Evaluating Particle Behavior in Fluid Flow Under Simulated Reduced Gravity Conditions

2009-07-12
2009-01-2359
A terrestrial analog device was developed to test the performance of a proposed lunar regolith-based water filtration design. To support this study, the flow behavior of tracer particles passing through a glass bead media filter was evaluated on NASA's reduced gravity aircraft in simulated microgravity and lunar gravity environments. The flight results were then compared to tests conducted using a novel application of a clinostat tilted ∼10 degrees from horizontal to simulate a lunar gravity vector fraction (1/6 of Earth's gravity, or 0.17g) acting axially on the fluid system. Phase I was designed to examine large particle fluidization and sedimentation characteristics, and showed that with relatively large particles, a sedimentation layer formed in the inclined clinostat similar to the true reduced gravity environment.
Technical Paper

A Pilot Scale System for Low Temperature Solid Waste Oxidation and Recovery of Water

2009-07-12
2009-01-2365
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work was to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. TDA and NASA Ames Research Center have developed a pilot scale low temperature ozone oxidation system to convert organic waste to CO2 and H2O.
Technical Paper

Water Reclamation Using Spray Drying

2009-07-12
2009-01-2364
Spray drying is a continuous physical separation process where a solution is sprayed into a hot drying medium. The resulting products are dry solute particles and the drying medium bearing the solvent vapor. Using one of several methods the solvent is recovered from the drying medium. The exact nature of the dried solid and recovered solvent depends on the physical and chemical properties of the feed and the design and operation of the dryer. In this paper we discuss progress made on the development of a prototype for advanced life support applications, and provide data on its purification abilities. A system processing 1 kg hr−1 of aqueous brine solution consumes on the order of 1000 W, but this value was strongly tied to other processing parameters such as dryer inlet and exit temperatures and the heating mode. Analysis of recovered water having an initial concentration of 48000 ppm TDS had between 12 and 134 ppm TDS and strongly depended on the processing conditions.
Technical Paper

Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development

2009-07-12
2009-01-2370
Designing the most effective and efficient life support systems is of extreme importance as the United States makes plans to return astronauts to the Moon. The Trace Contaminant Control System (TCCS), which will be located within the Portable Life Support System (PLSS) of the Constellation spacesuit element (CSSE), is responsible for removing contaminants that, at increased levels, can be hazardous to crew member health. These contaminants arise from several sources including metabolic production of the crew member (e.g., breathing, sweating, etc.) and offgassing of the spacesuit material layers. This paper summarizes the results of a trade study that investigated TCC technologies that were used in NASA space-suits and vehicles, as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS.
Technical Paper

Evaluation of Carbon Dioxide Sensors for the Constellation Space Suit Life Support System for Surface Exploration

2009-07-12
2009-01-2372
This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that non-dispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

2009-07-12
2009-01-2468
This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Technical Paper

Miniaturized Sensor Systems for Early Fire Detection in Spacecraft

2009-07-12
2009-01-2469
A fire in spacecraft or habitat supporting NASA's Exploration mission could jeopardize the system, mission, and/or crew. Given adequate measures for fire prevention, the hazard from a fire can be significantly reduced if fire detection is rapid and occurs in the early stages of fire development. The simultaneous detection of both particulate and gaseous products has been proven to rapidly detect fires and accurately distinguish between real fires and nuisance sources. This paper describes the development status of gaseous and particulate sensor elements, integrated sensor systems, and system testing. It is concluded that while development is still necessary, the fundamental approach of smart, miniaturized, multisensor technology has the potential to significantly improve the safety of NASA space exploration systems.
Technical Paper

Search for Life on Mars and ExoMars Planetary Protection Approach

2009-07-12
2009-01-2394
ExoMars is the first mission in ESA's Aurora Exploration Programme. ExoMars will pursue important science and technology objectives aimed at extending Europe's capabilities in planetary exploration. ExoMars will deploy a Rover carrying a suite of instruments dedicated to exobiology and geology research. The Rover will travel several kilometres searching for traces of past and present signs of life, collecting and analysing samples from within surface rocks and from the subsurface, down to a depth of 2 metres. The planetary protection policy of the Committee on Space Research (COSPAR) and the particular sensitivity of the life detection investigations establish stringent contamination control constraints for the ExoMars mission. Particulate, molecular and bioburden contamination control beyond the level of standard spacecraft is required for the flight system as well as for the assembly, test, and launch environment.
Technical Paper

Development and Testing of a Prototype Microwave Plasma Reactor for Hydrogen Recovery from Sabatier Waste Methane

2009-07-12
2009-01-2467
In the Sabatier reactor, oxygen is recovered (as water) by hydrogenation of carbon dioxide. One half of the reacted hydrogen is contained within the product water, the other half is used to form methane (CH4). Hydrogen resupply requirements for the oxygen recovery process can be minimized by reclamation of hydrogen from the methane waste. To this end, we have developed effective methods for the recovery of hydrogen from CH4 using a microwave plasma reactor. By selectively promoting the oligomerization reaction which forms hydrogen and acetylene, up to 75% of the waste hydrogen can be recovered in a manner which minimizes the carbon fouling and carbon build-up problems which drastically reduce the long-term viability of traditional methane pyrolysis methods using fixed bed and fluidized bed reactors.
Technical Paper

Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

2009-07-12
2009-01-2470
Fire detection, post fire atmospheric monitoring, fire extinguishing, and post fire atmospheric cleaning are vital components of a spacecraft fire response system, Preliminary efforts focused on the technology evaluation of fire detection, post fire atmospheric monitoring and post fire cleanup systems under realistic conditions are described in this paper. While the primary objective of testing is to determine the performance of a smoke mitigation filter, supplemental evaluations measuring the smoke-filled chamber handheld Commercial Off The Shelf (COTS) atmospheric monitoring devices (combustion product monitors) are conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

2009-07-12
2009-01-2473
A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar®, Vectran®, Orthofabric, and Tyvek®) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran®) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar® and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek®, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek®. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran® and Kevlar® suffering considerably more extensive filament breakage.
Technical Paper

First Human Testing of the Orion Atmosphere Revitalization Technology

2009-07-12
2009-01-2456
A system of amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and is baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology, which was performed in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to use real human loads in the spring of 2008.
Technical Paper

A5ES-ATV: Aerothermodynamical Study of the Deorbitation of the Ariane 5 Upper Composite

2009-07-12
2009-01-2453
This paper is devoted to the methodology and techniques used by ASTRIUM-ST to analyze the aerothermodynamics of the A5 upper composite reentry. Direct Simulation Monte Carlo methods were applied to compute the composite's surrounding flows and thermal fluxes at walls for its different possible attitudes during deorbitation and along its various scenarios' flight paths. The results are then used as inputs for the determination of the composite's thermal behavior and especially of its main wall structures and equipments as well as propellant and helium tanks with the prediction of their rupture and the ejection velocity of their respective fragments.
X