Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Size and Weight Reduction Technology for a Hybrid System

2009-04-20
2009-01-1339
A small hybrid system was developed for the 2009 model hybrid vehicle. The Intelligent Power Unit (IPU), which consists of a high-voltage battery and a Power Control Unit (PCU), occupies 19% less volume and is 28% lighter than the previous model(1). In order to reduce the size and weight of the IPU, the number of nickel-metal hydride battery modules was reduced, enabling the battery box to be made smaller and lighter. In order to provide the necessary output with fewer battery modules, the length of the battery electrodes was increased, thus raising the output from each battery module. The volume and weight of the PCU were reduced by integrating the inverter, DC-DC converter, and ECU into a single package. The size reduction of the IPU enabled the IPU to be installed at the bottom of the luggage compartment. As a result, the available space in the luggage compartment is the same as that of a conventional vehicle.
Journal Article

Development of New TOYOTA FCHV-adv Fuel Cell System

2009-04-20
2009-01-1003
Since 1992, Toyota Motor Corporation (TMC) has been working on the development of fuel cell system technology. TMC is designing principal components in-house, including fuel cell stacks, high-pressure hydrogen storage tank systems, and hybrid systems. TMC developed the ‘02 model TOYOTA FCHV, the world-first market-ready fuel cell vehicle, and started limited lease of the vehicles in December 2002. In June 2008, TMC developed a new TOYOTA FCHV-adv which obtained vehicle type certification in Japan, and is currently available for leasing in Japan and the United States. In the development of the TOYOTA FCHV-adv, TMC has improved the cruising range and cold start/drive capability from the previous TOYOTA FCHV. The TOYOTA FCHV-adv has achieved an actual cruising range of over 500 km, which is equivalent to that of current gasoline vehicles. In addition, the TOYOTA FCHV-adv has proven starting/driving capability at -30°C temperature.
Journal Article

Improved Accuracy of Unguided Articulated Robots

2009-11-10
2009-01-3108
The effectiveness of serial link articulated robots in aerospace drilling and fastening is largely limited by positional accuracy. Unguided production robotic systems are practically limited to +/-0.5mm, whereas the majority of aerospace applications call for tolerances in the +/-0.25mm range. The precision with which holes are placed on an aircraft structure is affected by two main criteria; the volumetric accuracy of the positioner, and how the system is affected when an external load is applied. Production use and testing of off-the-shelf robots has highlighted the major contributor to reduced stiffness and accuracy as being error ahead of the joint position feedback such as backlash and belt stretch. These factors affect the omni-directional repeatability, thus limiting accuracy, and also contribute to deflection of the tool point when process forces are applied.
Journal Article

Solution for Automated Drilling and Lockbolt Installation in Carbon Fiber Structures

2009-11-10
2009-01-3214
Manual drilling and Lockbolt installation in carbon fiber structures is a labor intensive process. To reduce man hour requirements while concurrently improving throughput and process quality levels BROETJE-Automation developed a gantry positioning system with high performance multi-function end effectors for this application. This paper presents a unique solution featuring fully automated drilling and Lockbolt installation (inclusive of automated collar installation) for the vertical tail plane (vertical stabilizer) of large commercial aircraft. A flexible and reconfigurable assembly jig facilitates high access of the end effectors and increases the equipment efficiency. The described system fulfils the demand for affordable yet flexible precision manufacturing with the capacity to handle different aircraft model panels within the work envelope.
Journal Article

Protection of the C-17 Airplane during Semi Prepared Runway Operations

2009-11-10
2009-01-3203
The C-17 airplane operates in some of the most challenging environments in the world including semi prepared runway operations (SPRO). Typical semi-prepared runways are composed of a compacted soil aggregate of sand, silt, gravel, and rocks. When the airplane lands or takes off from a semi-prepared runway, debris, including sand, gravel, rocks and, mud is kicked up from the nose landing gear (NLG) and the main landing gear (MLG) tires. As the airplane accelerates to takeoff or decelerates from landing touchdown, this airborne debris impacts the underbelly and any component mounted on the underbelly. The result is the erosion of the protective surface coating and damage to systems that protrude below the fuselage into the debris path. The financial burden caused by SPRO damage is significant due to maintenance costs, spares costs and Non-Mission Capable (NMC) time.
Journal Article

Modeling of Fastener Kitting Logistics for Boeing Wide Body Airplanes

2009-11-10
2009-01-3252
At Boeing’s commercial aircraft production in Everett Washington, the organization that supplies parts to the factory floor (known internally as Company 625) is revising their methods. A new process will deliver parts in kits that correspond to the installation plans used by the mechanics. Several alternative methods are under review. The authors used simulation methods to evaluate and compare these alternatives. This study focuses on the category of parts known as standard fasteners (‘standards’). Through direct observation, interviews with experts, as well as time and motion study, the process flow of the kitting operation was mapped A simulation model was created using the simulation software ARENA to examine two scenarios: the current kitting operation in the factory cribs and the proposed centralization of kitting operation in the Company 625.
Journal Article

Experimental Techniques of Measuring Vibratory Force for Aircraft Wings

2009-11-10
2009-01-3283
The authors measured the vibratory forces acting on an airfoil model by performing a ground vibration test (GVT). The airfoil model was manufactured using rapid prototyping. In the experiments, the airfoil model's structural response was also recorded and described. This paper detailedly introduces the entire experiment process and the obtained experimental data agreed well to the actual values.
Journal Article

SoH Recognition of Aviation Batteries Via Passive Diagnostic Device

2010-11-02
2010-01-1762
Aviation battery maintenance is trending toward on-condition maintenance. Nickel-Cadmium (NiCd), Valve Regulated Lead-Acid (VRLA), or prospective Li-ion batteries are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. As these functions are mission essential, State of Health (SoH) recognition is critical. SoH includes information regarding battery energy, power and residual cycle life. This paper describes an SoH recognition technique for on-board aviation batteries and presents a passive diagnostic device (PDD). The PDD monitors on-board system battery current, voltage and ambient temperature and utilizes no active signals to the battery which can be restricted or even prohibited in order to avoid any interference with the vehicle electrical system.
Journal Article

System Integration of a Safe, High Power, Lithium Ion Main Battery into a Civil Aviation Aircraft

2010-11-02
2010-01-1770
The Cessna Citation CJ4, certified on March 12, 2010, is believed to be the first civil aircraft with a Lithium Ion main battery. The 26.4VDC, 44Ah Lithium Ion main battery weighs 54 lbs, a 35% weight saving over a Nickel-Cadmium battery. Using phosphate-based Lithium Ion cells, which have no positive feedback thermal runaway failure mode, system integration of the battery and aircraft architecture design is simpler. Electronics and software are needed to optimize life only, not to ensure safety. Emergency discharge with failed electronics is enabled with the selection of a less volatile chemistry, the use of an analog Module Management System for cell balancing and protection, and the use of a microcontroller-based digital Central Monitoring System that reports health. System safety failure hazard assessment is considered Major, and the battery software is certified to the requirements of RTCA DO-178B, Design Assurance Level C.
Journal Article

Electro-Thermal Modeling of a Lithium-ion Battery System

2010-10-25
2010-01-2204
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
Journal Article

The Technology and Economics of In-Wheel Motors

2010-10-19
2010-01-2307
Electric vehicle development is at a crossroads. Consumers want vehicles that offer the same size, performance, range, reliability and cost as their current vehicles. OEMs must make a profit, and the government requires compliance with emissions standards. The result - low volume, compromised vehicles that consumers don't want, with questionable longevity and minimal profitability. In-wheel motor technology offers a solution to these problems; providing power equivalent to ICE alternatives in a package that does not invade chassis, passenger and cargo space. At the same time in-wheel motors can reduce vehicle part count, complexity and cost, feature integrated power electronics, give complete design freedom and the potential for increased regenerative braking (reducing battery size and cost, or increasing range).
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

Plug-In Electric Vehicle Charge Time Robustness

2011-04-12
2011-01-0065
With the introduction of plug-in electric vehicles (PEVs), the conventional mindset of “fill-up time” will be challenged as customers top off their battery packs. For example, using a standard 120VAC outlet, it may take over 10hrs to achieve 40-50 miles of EV range-making range anxiety a daunting reality for EV owners. As customers adapt to this new mindset of charge time, it is critical that automotive OEMs supply the consumer with accurate charge time estimates. Charge time accuracy relies on a variety of parameters: battery pack size, power source, electric vehicle supply equipment (EVSE), on-board charging equipment, ancillary controller loads, battery temperature, and ambient temperature. Furthermore, as the charging events may take hours, the initial conditions may vary throughout a plug-in charge (PIC). The goal of this paper is to characterize charging system sensitivities and promote best practices for charge time estimations.
Journal Article

Design Information Management of an On-Line Electric Vehicle Using Axiomatic Design

2010-04-12
2010-01-0279
Axiomatic design is utilized to identify the design characteristics of an On-Line Electric Vehicle and to manage the design information. The On-Line Electric Vehicle, which is being developed at the Korea Advanced Institute of Science and Technology, is a different concept of an electric vehicle from conventional electric vehicles which use the electric power of a charged battery(s). It is operated by an electric power supplied by the contactless power transmission technique between the roadway side and the vehicle. In other words, the power is transmitted based on the principle of an electric transformer. The On-Line Electric Vehicle can overcome the limitations of conventional electric vehicles such as the weight of the battery and driving distance problems. Because designers have little experience and knowledge about the On-Line Electric Vehicle in the developmental stage, an appropriate design guide is needed. The axiomatic approach is employed for the design process.
Journal Article

Evidence Theory Based Automotive Battery Health Monitoring

2010-04-12
2010-01-0251
As the number of electrical devices in modern vehicles increases, the battery becomes more critical component for the operation of vehicles. To ensure the startability of the vehicle, battery conditions such as state of charge and state of health should be properly monitored and maintained. To reduce walk-home incidents due to no-start situation, appropriate warning should be issued to the driver to advise necessary actions such as replacing or re-charging the battery. For the last couple of years, General Motors has studied and developed several battery health monitoring methods based on different battery health signatures. Yet, it is found that relying on a single method may lead to false alarm or misdetection due to lack of information or uncertainty. This paper develops the algorithm for more robust and reliable battery health monitoring and prognosis, by applying Evidence Theory to fuse different battery health signatures.
Journal Article

A Study of Fuel Converter Requirements for an Extended-Range Electric Vehicle

2010-04-12
2010-01-0832
Current focus on techniques to reduce the tailpipe carbon dioxide (CO₂) emissions of road vehicles is increasing the interest in hybrid and electric vehicle technologies. Pure electric vehicles require bulky, heavy, and expensive battery packs to enable an acceptable drivable range to be achieved. Extended-range electric vehicles (E-REVs) partly overcome the limitations of current battery technology by having an onboard fuel converter that converts a liquid fuel, such as gasoline, into electrical energy whilst the vehicle is driving. Thus enabling the traction battery storage capacity to be reduced, whilst still maintaining an acceptable vehicle range. This paper presents results from a drive style analysis toolset that enable US and EU fleet vehicle drive data to be categorized and compared. Key metrics, such as idle frequency, idle duration, vehicle speed, and vehicle acceleration are analyzed.
Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
X