Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1145
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Journal Article

Measures to Prevent Unauthorized Access to the In-Vehicle E/E System, Due to the Security Vulnerability of a Remote Diagnostic Tester

2017-03-28
2016-32-0018
Remote diagnostic systems support diagnostic communication by having the capability of sending diagnostic request services to a vehicle and receiving diagnostic response services from a vehicle. These diagnostic services are specified in diagnostic protocols, such as SAE J1979, SAE J1939 or ISO 14229 (UDS). For the purpose of diagnostic communication, the tester needs access to the electronic control units as communication partners. Physically, the diagnostic tester gets access to the entire vehicle´s E/E system, which consists of connectors, wiring, the in-vehicle network (e.g. CAN), the electronic control units, sensors, and actuators. Any connection of external test equipment and the E/E system of a vehicle poses a security vulnerability. The combination can be used for malicious intrusion and manipulation.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

A Comprehensive Review of Pedestrian Impact Reconstruction

1987-02-01
2014-01-2828
This paper presents a review on pedestrian impact reconstruction methodology and offers a comprehensive review of the literature. Several types of analyses are discussed which can be used to reconstruct the accident scenario using the facts collected from the scene. Inclusive in this review is the utilization of skid mark analysis, debris analysis, injury/damage match-up, trajectory analysis, nighttime visibility, and alcohol effects. The pedestrian impact reconstruction methodology is illustrated with a real world case example to point out different observations which can provide insight into the pedestrian/vehicle collision reconstruction approach. The literature review provides a broad foundation of information on pedestrian impact reconstruction and can be used to supplement the techniques presented in this paper in areas related to pedestrian impact. Research advances in the area of pedestrian impact reconstruction are also discussed in this paper.
Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Vehicle Chassis, Body, and Seat Belt Buckle Acceleration Responses in the Vehicle Crash Environment

2009-04-20
2009-01-1246
For over 30 years, field research and laboratory testing has consistently demonstrated that proper utilization of a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards and SAE Recommended Practices set forth seat belt requirements to ensure proper buckle performance in accident conditions. Numerous analytical and laboratory studies have investigated buckle inertial release properties. Studies have repeatedly demonstrated that current buckle designs have inertial release thresholds well above those believed to occur in real-world crashes. Nevertheless, inertial release theories persist. Various conceptual amplification theories, coupled with high magnitude accelerations measured on vehicle frame components are used as support for these release theories.
Journal Article

Postural Comfort Inside a Car: Development of an Innovative Model to Evaluate the Discomfort Level

2009-04-20
2009-01-1163
How can car designers evaluate device’s position inside a car today? Today only subjective tests or “reachability” tests are made to assess if a generic user is able to reach devices, but it’s no longer enough. The aim of this study is to identify an instrument (index) that is able to provide a numerical information about the discomfort level connected with a posture that is kept inside a car to reach a device, by this instrument it should be possible not only judge a posture, but also compare different solutions and get rapid and accurate evaluations. In the state of the art there are many indexes developed to evaluate postural comfort (like RULA, REBA and LUBA [3, 4, 5]) but none of them has been realized to evaluate postures’ conditions that can be detected inside a car, so their evaluations cannot be acceptable.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Size and Weight Reduction Technology for a Hybrid System

2009-04-20
2009-01-1339
A small hybrid system was developed for the 2009 model hybrid vehicle. The Intelligent Power Unit (IPU), which consists of a high-voltage battery and a Power Control Unit (PCU), occupies 19% less volume and is 28% lighter than the previous model(1). In order to reduce the size and weight of the IPU, the number of nickel-metal hydride battery modules was reduced, enabling the battery box to be made smaller and lighter. In order to provide the necessary output with fewer battery modules, the length of the battery electrodes was increased, thus raising the output from each battery module. The volume and weight of the PCU were reduced by integrating the inverter, DC-DC converter, and ECU into a single package. The size reduction of the IPU enabled the IPU to be installed at the bottom of the luggage compartment. As a result, the available space in the luggage compartment is the same as that of a conventional vehicle.
Journal Article

Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession

2009-04-20
2009-01-1356
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization

2009-04-20
2009-01-1508
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

The Poisoning and Desulfation Characteristics of Iron and Copper SCR Catalysts

2009-04-20
2009-01-0900
A laboratory study was performed to assess the effects of SO2 poisoning on the NOx conversion of iron (Fe) and copper (Cu) SCR catalysts. Thermally aged samples of the catalysts were poisoned with SO2 under lean conditions. At various times during the poisonings, the samples were evaluated for NOx conversion with NO and NH3 using lean temperature ramps. The low temperature NOx conversions of both catalysts decreased by 10 to 20% after 1 to 4 hours of poisoning but were stable with continued exposure to the SO2. The poisoned Cu SCR catalyst could be desulfated repeatedly with 5 minutes of lean operation at 600°C. Initially, the poisoned Fe SCR catalyst required 5 minutes of lean operation at 750°C to recover its maximum NOx conversion.
Journal Article

Treasuri2/FE: A Tool for the FE Simulation of Sound Package Parts Fully Integrated in Nastran

2009-05-19
2009-01-2216
Porous materials are extensively used in the construction of automotive sound package parts, due to their intrinsic capability of dissipating energy through different mechanisms. The issue related to the optimization of sound package parts (in terms of weight, cost, performances) has led to the need of models suitable for the analysis of porous materials' dynamical behavior and for this, along the years, several analytical and numerical models were proposed, all based on the system of equations initially developed by Biot. In particular, since about 10 years, FE implementations of Biot's system of equations have been available in commercial software programs but their application to sound package parts has been limited to a few isolated cases. This is due, partially at least, to the difficulty of smoothly integrating this type of analyses into the virtual NVH vehicle development.
Journal Article

Aspects of NVH Integration in Hybrid Vehicles

2009-05-19
2009-01-2085
NVH refinement is an important aspect of the powertrain development and vehicle integration process. The depletion of fossil-based fuels and increase in price of gasoline have prompted most vehicle manufacturers to embrace propulsion technologies with varying degrees and types of hybridization. Many different hybrid vehicle systems are either on the market, or under development, even up to all-electric vehicles. Each hybrid vehicle configuration brings unique NVH challenges that result from a variety of sources. This paper begins with an introductory discussion of hybrid propulsion technologies and associated unique vehicle NVH challenges inherent in the operation of such hybrid vehicles. Following this, the paper outlines a two-dimensional landscape of typical customer vehicle maneuvers mapped against hybrid electric vehicle (HEV) operational modes.
X