Refine Your Search

Topic

Search Results

Standard

Nitrogen Absorption/Desorption (Gas Dissolution) in Aircraft Shock Absorbers

2019-04-18
WIP
AIR6942
This document outlines the current state of the art in the understanding of gas in solution in shock absorber oils in unseperated shock absorbers. A literature review, overview of Henry's law, Henry's law coefficients for known gas and oil couples, in-service operational problems, lessons learned, and potential future work will be discussed in the document.
Standard

SAFE-LIFE LIMITS FOR LANDING GEAR STRUCTURES

2018-04-26
WIP
AIR6949
This document describes the approaches taken to define safe-life limits for the management of fatigue in landing gear structures, and the substantiation of those limits through full-scale fatigue testing. The safe-life scatter factors considered in a range of military and civil regulatory standards are also reviewed.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2006-05-19
HISTORICAL
AIR4846
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2012-10-03
CURRENT
AIR4846A
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2006-04-20
HISTORICAL
AIR5541
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2012-10-03
CURRENT
AIR5541A
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

Landing Gear Manufacturing, Maintenance, Repair, and Overhaul Critical Processes

2022-05-09
CURRENT
AIR6813
CPs are a process that is executed on a critical landing gear (or undercarriage) part, assembly or equipment that if performed incorrectly or omitted would cause: An operational failure of the aircraft; or An unacceptable risk of injury This document identifies CPs that have either caused operational failure or that can be reasonably expected to cause operational failures based on experience. Note that in the interest of brevity, that this document is not intended to be a definitive listing, only an introduction and a consideration of common processes.
Standard

AIRCRAFT TAIL BUMPERS

1984-09-01
HISTORICAL
AIR1800
This document covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
Standard

Aircraft Tail Bumpers

2021-06-22
CURRENT
AIR1800B
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
Standard

Aircraft Tail Bumpers

2021-02-03
HISTORICAL
AIR1800A
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
Standard

Landing Gear Fatigue Spectrum Development For Part 25 Aircraft

2020-02-28
CURRENT
AIR5914
This SAE Aerospace Information Report (AIR) provides guidelines for the development of landing gear fatigue spectra for the purpose of designing and certification testing of Part 25 landing gear. Many of the recommendations herein are generalizations based on data obtained from a wide range of landing gears. The aircraft manufacturer or the landing gear supplier is encouraged to use data more specific to their particular undercarriage whenever possible.
Standard

CRACK INITIATION AND GROWTH CONSIDERATIONS FOR LANDING GEAR STEEL WITH EMPHASIS ON AERMET 100

1997-06-01
HISTORICAL
AIR5052
Steel alloys, such as AF1410 (AMS 6527, UNS K92571) and AerMet 100 (AMS 6532), have been developed which have improved Fracture Toughness characteristics compared to the current landing gear steel alloy, 300M (AMS 6419 and AMS 6257, MIL-S-8844, UNS K44220). The 300M steel is the most widely used material in current landing gear designs. It has been successfully used in thousands of applications. The use of the 300M material necessitates a safe life design criterion where components are retired after one-fourth to one-sixth the laboratory test life. This criterion was established in part due to the relatively low fracture toughness of low-alloy steel in the 260 to 300 ksi strength range. The high fracture tough alloys give comparable strength levels with an increase in fracture toughness and better resistance to stress corrosion cracking. These alloys may make possible the consideration of new procedures for operation, maintenance, and inspection.
Standard

Crack Initiation and Growth Considerations for Landing Gear Steel With Emphasis on Aermet 100

2004-12-27
CURRENT
AIR5052A
Steel alloys, such as AF1410 (AMS 6527, UNS K92571) and AerMet 100 (AMS 6532), have been developed which have improved Fracture Toughness characteristics compared to the current landing gear steel alloy, 300M (AMS 6419 and AMS 6257, MIL-S-8844, UNS K44220). The 300M steel is the most widely used material in current landing gear designs. It has been successfully used in thousands of applications. The use of the 300M material necessitates a safe life design criterion where components are retired after on-fourth to one-sixth the laboratory test life. This criterion was established in part due to the relative low fracture toughness of low-alloy steel in the 260 to 300 ksi strength range. The high fracture tough alloys give comparable strength levels with an increase in fracture toughness and better resistance to stress corrosion cracking. These alloys may make possible the consideration of new procedures for operation, maintenance, and inspection.
Standard

Landing Gear Shock Absorption Testing of Civil Aircraft

2019-04-17
HISTORICAL
ARP5644
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate.
Standard

Landing Gear Shock Absorption Testing of Civil Aircraft

2020-07-14
CURRENT
ARP5644A
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate.
Standard

Tail Bumpers for Piloted Aircraft

2017-07-14
CURRENT
ARP1107C
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1971-07-01
HISTORICAL
ARP1107
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1991-06-11
HISTORICAL
ARP1107A
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Tail Bumpers for Piloted Aircraft

2012-05-03
HISTORICAL
ARP1107B
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
X