Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Flight Critical Control Valves, Military Aircraft

2013-07-09
CURRENT
ARP5796
This SAE Aerospace Recommended Practice (ARP) provides guidance in the design, development, qualification test, process control and production acceptance test for flight critical control valve (FCCV) design used in military flight control servoactuators where loss of single valve control could cause a catastrophic failure resulting in death, permanent total disability, and/or financial loss exceeding a defined contractual limit. The FCCV, which is one element of a flight control actuator servo control loop, is a variable position control valve which modulates fluid into and out of the servoactuator power stage cylinders. The FCCV may be mechanically driven by either a mechanical flight control system as shown in FIGURE 1 or hydraulically driven from electro-hydraulic servo valve (EHSV) modulation control flow as shown in FIGURE 2. This type of control valve is not an EHSV or a direct drive valve (DDV). The FCCV is used in military hydraulic systems which conform to AS5440.
Standard

Aerospace Fluid Power - Contamination Sensitivity - Considerations for Establishing Test Procedures for Flight Control Actuators

2020-10-09
CURRENT
ARP5941
This SAE Aerospace Recommended Practice (ARP) describes the design conditions under which tests should be conducted to demonstrate satisfactory performance of a flight critical servo-actuator under the maximum allowable particulate contamination in the associated airplane hydraulic system. Additionally, this document also describes the recommended tests and the required acceptance criteria.
Standard

SERVOACTUATORS: AIRCRAFT FLIGHT CONTROLS, POWER OPERATED, HYDRAULIC, GENERAL SPECIFICATION FOR

1974-01-01
HISTORICAL
ARP1281
This specification establishes the requirements for power operated hydraulic servoactuators when used in flight control systems. These servoactuators may be controlled by mechanical, hydraulic or electrical inputs or combinations thereof, and may be powered by one or more hydraulic systems. The complete servoactuator package may incorporate primary components such as control servovalve, input linkage and position feedback lever in addition to the actuating cylinder. Secondary components may also be included such as stability and control augmentation actuators, bypass valves, residual pressure compensators, electrohydraulic servovalves, filters, pressure switches, motor or solenoid operated shut-off valves, thermostatic control valves, hydraulic logic, mechanical locking devices and electrical transducers.
Standard

Flight Critical Control Valves, Military Aircraft

2021-02-03
WIP
ARP5796A
This SAE Aerospace Recommended Practice (ARP) provides guidance in the design, development, qualification test, process control and production acceptance test for flight critical control valve (FCCV) design used in military flight control servoactuators where loss of single valve control could cause a catastrophic failure resulting in death, permanent total disability, and/or financial loss exceeding a defined contractual limit. The FCCV, which is one element of a flight control actuator servo control loop, is a variable position control valve which modulates fluid into and out of the servoactuator power stage cylinders. The FCCV may be mechanically driven by either a mechanical flight control system as shown in Figure 1 or hydraulically driven from electro-hydraulic servo valve (EHSV) modulation control flow as shown in Figure 2. This type of control valve is not an EHSV or a direct drive valve (DDV). The FCCV is used in military hydraulic systems which conform to AS5440.
Standard

ELECTROHYDRAULIC SERVOVALVES

1993-09-16
HISTORICAL
ARP490E
This SAE Aerospace Recommended Practice (ARP) is intended as a guide to aid in the specification and testing of electrohydraulic servovalves. The recommendations contained in this ARP are confined to the input and output characteristics of electrohydraulic servovalves, the primary focus being four-way flow control servovalves. Three-way flow control servovalves are discussed to a limited extent, and terminology recommended for use with pressure control servovalves is also presented. The information presented should be useful in standardizing the terminology, the specification of physical and performance parameters, and the test procedures used in conjunction with these components. The recommendations do not restrict nor attempt to define the internal design characteristics of servovalves. As such, the material is equally applicable to servovalves having different internal functioning, different ratings, different physical size, etc.
X