Refine Your Search

Topic

Search Results

Standard

Guidance on the Impact of Fuel Properties on Fuel System Design and Operation

2018-02-24
CURRENT
AIR7484
This document describes a number of jet fuel properties and where applicable gives the specification limits for Jet A and Jet A-1, though the properties are generally applicable to all turbine fuels. Later versions of this document will give more details on specification limits for other similar fuels, such as TS-1, where they differ from Jet A and Jet-A1. It gives details about the possible impact on airframe fuel system design.
Standard

ACCEPTANCE TEST PROCEDURES AND STANDARDS TO INSURE CLEAN FUEL SYSTEM COMPONENTS

2007-12-04
HISTORICAL
ARP1953A
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory type methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

ACCEPTANCE TEST PROCEDURES AND STANDARDS TO INSURE CLEAN FUEL SYSTEM COMPONENTS

1992-08-01
HISTORICAL
ARP1953
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory type methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Acceptance Test Procedures and Standards to Ensure Clean Fuel System Components

2020-10-01
CURRENT
ARP1953B
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Self-Sealing Breakaway Valves for Crash-Resistant Aircraft Fuel Systems

2020-03-19
CURRENT
AIR1616B
MIL-STD-1290, 14 CFR 27.952, and 14 CFR 29.952 provide crash resistant fuel system design and test criteria that significantly minimize fuel leaks and occurrence of post-crash fire in survivable impacts. This document does not change and does not authorize changes in or deviations from MIL-Standard or regulatory requirements. This document provides guidance for the design, performance, and test criteria for self-sealing breakaway valves.
Standard

Capacitive Fuel Gauging System Accuracies

2021-04-23
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

CAPACITIVE FUEL GAUGING SYSTEM ACCURACIES

2007-12-04
HISTORICAL
AIR1184A
This report is intended to identify the necessary analytical tools to enable making value judgments for minimizing the various errors typically encountered in capacitance systems. Thus, in addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance accuracy is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of Capacitive Fuel Gauging operation is provided in the Appendix.
Standard

Aircraft Flexible Tanks General Design and Installation Recommendations

2019-05-07
CURRENT
AIR1664A
This SAE Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of nonself-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in Section 2.
Standard

AIRCRAFT FLEXIBLE TANKS GENERAL DESIGN AND INSTALLATION RECOMMENDATIONS

1994-09-01
HISTORICAL
AIR1664
This Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of non-self-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in section 3.
Standard

Impact of Changes in Test Dust Contaminants and Particle Counter Calibration on Laboratory Filter Element Performance and Fluid Cleanliness Classes

2003-07-03
HISTORICAL
AIR5455
This SAE Aerospace Information Report (AIR) discusses the impact of the ISO Test Dusts, chosen as replacement contaminants for the Arizona Test Dusts (AC Test Dusts), and the ISO calibration procedure ISO 11171 for automatic particle counters, which replaces the calibration procedure ISO 4402 (1991), on laboratory performance of filter elements utilized in aerospace lubrication, hydraulic and fuel systems, and fluid cleanliness levels determined with automatic particle counters.
Standard

Impact of Changes in Test Dust Contaminants and Particle Counter Calibration on Laboratory Filter Element Performance and Fluid Cleanliness Classes

2012-01-03
CURRENT
AIR5455A
This SAE Aerospace Information Report (AIR) discusses the impact of the ISO Test Dusts, chosen as replacement contaminants for the Arizona Test Dusts (AC Test Dusts), and the ISO calibration procedure ISO 11171 for automatic particle counters, which replaces the calibration procedure ISO 4402 (1991), on laboratory performance of filter elements utilized in aerospace lubrication, hydraulic and fuel systems, and fluid cleanliness levels determined with automatic particle counters.
Standard

Aircraft Flame Arrestor Installation Guidelines and Test Methods

2021-08-26
CURRENT
ARP5776
The scope of this document is to provide pertinent information on demonstrating the performance of Flame Arrestors, also known as Fuel Vent Protectors (FVPs), in preventing the propagation of a deflagration when the arrestors are subjected to aerospace-representative flames produced by the venting of flammable gas through the arrestor. Test procedures for two separate combustion-loading profiles are presented herein: The flame hold test condition, and the flame propagation test condition. For the flame hold test condition, the applicability of two separate critical flows is discussed in which one flow results in the greatest flame arrestor temperature and a second flow results in the greatest temperature of the surrounding structure.
Standard

GRAVITY REFUELING NOZZLES AND PORTS INTERFACE STANDARD FOR CIVIL AIRCRAFT

1984-12-01
HISTORICAL
AS1852
This Aerospace Standard (AS) defines maximum free opening dimensions for airframe refueling ports on civil aircraft that require the exclusive use of aviation gasolines, and minimum free opening dimensions for airframe refueling ports on civil aircraft that operate with turbine fuels as a primary fuel type. In addition, this document defines the minimum refueling nozzle tip dimensions for turbine fuels ground service equipment, and the maximum refueling nozzle tip diameter dimension for aviation gasolines ground service equipment.
Standard

GRAVITY REFUELING NOZZLES AND PORTS INTERFACE STANDARD FOR CIVIL AIRCRAFT

1988-02-01
HISTORICAL
AS1852A
This AS defines maximum free opening dimensions for airframe refueling ports on civil aircraft that require the exclusive use of aviation gasolines, and minimum free opening dimensions for airframe refueling ports on civil aircraft that operate with turbine fuels as a primary fuel type. In addition, this document defines the minimum refueling nozzle tip dimensions for turbine fuels ground service equipment, and the maximum refueling nozzle tip diameter dimension for aviation gasolines ground service equipment.
X