Refine Your Search

Topic

Search Results

Standard

Considerations for Safe Store Operation on Manned and Unmanned Vehicles

2017-06-27
CURRENT
AIR6027A
The information presented in this AIR is intended to provide designers of armed unmanned systems with guidelines that may be applied to ensure safe integration and operation of weapons on unmanned platforms. The guidelines have been developed from experiences gained in the design and operation of weapons on manned aircraft that have been accepted by relevant safety authorities in the USA and Europe and proven effective over many years. Whilst the guidelines have been developed from experience with aircraft operations, the concepts are considered equally applicable to non-aircraft systems, such as those used on the surface or undersea environments. This document does not attempt to define or describe a comprehensive safety program for unmanned systems. System Safety is a system characteristic and a non-functional requirement. It has to be addressed at each level of system design, system integration and during each phase of system operation.
Standard

Considerations for Safe Store Operation on Manned and Unmanned Vehicles

2012-05-03
HISTORICAL
AIR6027
The information presented in this AIR is intended to provide designers of armed unmanned systems with guidelines that may be applied to ensure safe integration and operation of weapons on unmanned platforms. The guidelines have been developed from experiences gained in the design and operation of weapons on manned aircraft that have been accepted by relevant safety authorities in the USA and Europe and proven effective over many years. Whilst the guidelines have been developed from experience with aircraft operations, the concepts are considered equally applicable to non-aircraft systems, such as those used on the surface or undersea environments. This document does not attempt to define or describe a comprehensive safety program for unmanned systems. System Safety is a system characteristic and a non-functional requirement. It has to be addressed at each level of system design, system integration and during each phase of system operation.
Standard

Interface for Micro Munition (IMM) Handbook

2016-09-16
CURRENT
AIR6114
This document was prepared by the SAE AS-1B1 IMM Task Group to explain and document background information and design decisions made during the development of AS5726. This handbook is published separately to preserve information that is not required or provided in the AS5726 but may be important to system designers to ensure interoperability between the Micro Munition Host and Micro Munition. As a handbook, it cannot be invoked as a requirement in a contract. The structure and numbering of this document mirrors that of AS5726 for the convenience of readers. Headings such as “Requirements” in this handbook should not be interpreted as invoking requirements.
Standard

Generic Aircraft-Store Interface Framework (GASIF)

2003-06-06
HISTORICAL
AIR5532
This SAE Aerospace Information Report (AIR) defines a Generic Aircraft-Store Interface Framework (GASIF). This is a common framework for modeling and specifying aircraft-store logical interfaces. GASIF complies with the OSI Basic Reference Model (ITU-T Rec. X.200 | ISO/IEC 7498-1) in that it describes operations and mechanisms which are assignable to layers as specified in the OSI Basic Reference Model. This AIR provides a mapping of the Interface Standard for Aircraft-store Electrical Interconnection System (AEIS), MIL-STD-1760, in Appendix C.
Standard

Generic Aircraft-Store Interface Framework (GASIF)

2012-08-22
CURRENT
AIR5532A
This SAE Aerospace Information Report (AIR) defines a Generic Aircraft-Store Interface Framework (GASIF). This is a common framework for modeling and specifying aircraft-store logical interfaces. GASIF complies with the OSI Basic Reference Model (ITU-T Rec. X.200 | ISO/IEC 7498-1) in that it describes operations and mechanisms which are assignable to layers as specified in the OSI Basic Reference Model. This AIR provides a mapping of the Interface Standard for Aircraft-store Electrical Interconnection System (AEIS), MIL-STD-1760, in Appendix C.
Standard

Technical Architecture for Aircraft, Launcher, and Weapon Interoperability (ALWI TA)

2008-01-16
HISTORICAL
AIR5720
The technical architecture defined in this document outlines mandatory, emerging, and needed standards to provide interoperability at key interfaces in the aircraft/store system (including an associated NATO Network Enabled Capability environment), as required to support a future plug-and-play aircraft/store integration capability. These standards relate to services and protocols associated with the subject interfaces. Modeling standards to facilitate the Model Driven Architecture® (MDA®) approach to system definition and implementation are also included. Note that the status of referenced standards as reflected in this document is as of August 2007, and document users should check to see if there has been a subsequent change of status relative to applicable standards.
Standard

Technical Architecture for Aircraft, Launcher, and Weapon Interoperability (ALWI TA)

2012-08-27
CURRENT
AIR5720A
The technical architecture defined in this document outlines mandatory, emerging, and needed standards to provide interoperability at key interfaces in the aircraft/store system (including an associated NATO Network Enabled Capability environment), as required to support a future plug-and-play aircraft/store integration capability. These standards relate to services and protocols associated with the subject interfaces. Modeling standards to facilitate the Model Driven Architecture® (MDA®) approach to system definition and implementation are also included. Note that the status of referenced standards as reflected in this document is as of August 2007, and document users should check to see if there has been a subsequent change of status relative to applicable standards.
Standard

Multiplex Data Bus Networks for MIL-STD-1760 Stores

2005-09-29
HISTORICAL
AIR4013B
This SAE Aerospace Information Report (AIR) will examine network aspects of open and shorted stubs, line reflections and bus loading due to network changes. Single network level is assumed, that is, no carriage store hierarchical levels. However, two passive network coupling variants called "branched bus" and "branched stub" will be introduced that possibly could be used in a stores management network. This report assumes familiarity with MIL-STD-1553B.
Standard

Multiplex Data Bus Networks for MIL-STD-1760 Stores

1996-08-01
HISTORICAL
AIR4013A
This SAE Aerospace Information Report (AIR) will examine network aspects of open and shorted stubs, line reflections and bus loading due to network changes. Single network level is assumed, that is, no carriage store hierarchical levels. However, two passive network coupling variants called "branched bus" and "branched stub" will be introduced that possibly could be used in a stores management network. This report assumes familiarity with MIL-STD-1553B.
Standard

Multiplex Data Bus Networks for MIL-STD-1760 Stores

2012-08-22
CURRENT
AIR4013C
This SAE Aerospace Information Report (AIR) will examine network aspects of open and shorted stubs, line reflections and bus loading due to network changes. Single network level is assumed, that is, no carriage store hierarchical levels. However, two passive network coupling variants called "branched bus" and "branched stub" will be introduced that possibly could be used in a stores management network. This report assumes familiarity with MIL-STD-1553B.
Standard

Handbook: Standard Electrical and Logical Interface for Airborne Fuzing Systems

2016-11-18
CURRENT
AIR6234
This Handbook is intended to provide useful information on the application of AS5716A. It is for use by System Program Offices, aircraft prime contractors, avionics and store system designers, system integrators and equipment manufacturers and users. This Handbook was prepared to provide users of the standard of the rationale and principles considered during the development of the standard. It is anticipated that the handbook will serve to assist developers in introducing new technology to achieve compliance with the standard and the underlying principles of the standard. It is intended that the Handbook be used alongside the standard, as it does not contain significant extracts of the standard.
Standard

Aircraft/Store Common Interface Control Document Format Standard

2004-07-22
HISTORICAL
AS5609
This SAE Aerospace Standard (AS) defines the editorial format and policies necessary for the publication of Interface Control documents. The Common Interface Control Document Format Standard defines a common format for aircraft/store interface documents to foster increased interoperability. It is designed with the versatility to serve differing “ICD” philosophies and organizations. This aerospace standard defines the common technical data sections for the Common Interface Control Document Format down to the third header level for the majority of sub-sections. The Common Interface Control Document Format Aerospace Standard provides a structured document format in appendixes supported by example paragraphs, drawings, etc.
Standard

Aircraft/Store Common Interface Control Document Format Standard

2017-01-12
CURRENT
AS5609A
This SAE Aerospace Standard (AS) defines the editorial format and policies necessary for the publication of Interface Control documents. The Common Interface Control Document Format Standard defines a common format for aircraft/store interface documents to foster increased interoperability. It is designed with the versatility to serve differing “ICD” philosophies and organizations. This aerospace standard defines the common technical data sections for the Common Interface Control Document Format down to the third header level for the majority of sub-sections. The Common Interface Control Document Format Aerospace Standard provides a structured document format in appendixes supported by example paragraphs, drawings, etc.
Standard

Verification Methods for MIL-STD-1760 Stores

2017-08-09
WIP
AS42702
This document establishes techniques for verifying that a Mission Store Interface (MSI) complies with the interface requirements delineated in MIL-STD-1760 Revision E.
Standard

Standard Electrical and Logical Interface for Airborne Fuzing Systems

2012-12-03
CURRENT
AS5716A
This interface standard applies to fuzes/fuzing systems (referred to as fuzing system hereafter) in airborne weapons that use a MIL-STD-1760 type interface. It defines the powers, the discrete signals and the serial data interface for the communications at the interface between the fuzing system and the remainder of the weapon, including the weapon control unit. The Class 1 interface is an electrical only interface that facilitates use of MIL-STD-1760 type platform store interfaces for the fuze to monitor intentional release and defines the fuze interface bus communications protocol to allow sending and receiving data from fuzing systems. Class 2 interfaces add a defined connector and additional interfaces to facilitate the exchange of compatible fuzing systems. Class 3 interfaces add further interface definitions to facilitate the exchange of AS5680A compatible fuzing systems components.
Standard

Standard Electrical and Logical Interface for Airborne Fuzing Systems

2010-02-11
HISTORICAL
AS5716
This interface standard applies to fuzes/fuzing systems (referred to as fuzing system hereafter) in airborne weapons that use a MIL-STD-1760 interface. It defines the powers, the discrete signals and the serial data interface for the communications at the interface between the fuzing system and the remainder of the weapon, including the weapon control unit, for Class 1 interfaces. Future issues of the standard will provide for additional fuzing system related functionality defined as Class 2 and Class 3 interfaces. For future issues of this standard, the connector definition is contained in AS5680. This standard does not impose any safety requirements and does not supersede or replace any existing applicable safety standards.
X