Refine Your Search

Topic

Search Results

Standard

FZG Test Review

2017-02-28
WIP
AIR6919
Over the past several years the FZG A/8.3/90 test method has been used to evaluate current qualified aviation lubricants. The results of the effort have been summarized in this document as a historical reference to document the findings made from the committee.
Standard

Evaluation of Corrosiveness and Oxidation Stability of Aviation Lubricant

2020-08-28
WIP
ARP6839
This test method describes a standardized process to evaluate the an aviation lubricant’s resistance to oxidation and corrosion-based degradation and to evaluate the fluid’s tendency to corrode various metals. Fluids are evaluated under a low-moisture atmosphere at a variety of times and temperatures.
Standard

Bearing Corrosion Test Method

2006-11-01
HISTORICAL
ARP4249
This SAE Aerospace Recommended Practice (ARP) is intended to evaluate corrosion inhibiting properties of synthetic gas turbine lubricants and gearbox oils.
Standard

Bearing Corrosion Test Method

2015-08-28
CURRENT
ARP4249A
This SAE Aerospace Recommended Practice (ARP) is intended to evaluate corrosion inhibiting properties of synthetic gas turbine lubricants and gearbox oils.
Standard

Evaluation of Gas Turbine Engine Lubricant Compatibility with Elastomer O-Rings

2022-08-24
CURRENT
ARP6179
This test method provides procedures for exposing specimens of elastomer materials (AS 568-214 size O-rings) representative of those used in gas turbine engines to lubricants or reference fluids under defined time and temperature conditions. This test includes both suspended and compressed O-rings. Resultant changes in the O-ring’s physical properties (tensile strength, elongation, hardness, mass, volume, and compression set) are measured to determine the amount of deterioration of the elastomer.
Standard

Aviation Lubricant Tribology Evaluator (ALTE) Method to Determine the Lubricating Capability of Gas Turbine Lubricants

2013-03-15
CURRENT
ARP6255
Employing ‘ball-on-cylinder’ philosophy, a non-rotating steel ball is held in a vertically mounted chuck and using an applied load is forced against an axially mounted steel cylinder. The test cylinder is rotated at a fixed speed while being partially immersed in a lubricant reservoir. This maintains the cylinder in a wet condition and continuously transports a lubricating film of test fluid to the ball and cylinder interface. The diameter of the wear scar generated on the test ball is used as a measure of the fluid’s lubricating properties. The apparatus can be used, by adjusting the operating conditions, to reproduce two different wear mechanisms; mild and severe wear, the ALTE therefore has the ability to assess a lubricant’s performance in that regard. These mechanisms are described below.
Standard

Evaluation of Coking Propensity of Aviation Lubricants in an Air-Oil Mist Environment using the Vapor Phase Coker

2014-04-03
CURRENT
ARP5921
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008–2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
Standard

Assessment of Elastomer Volume Swelling Behavior in Aero-Derived Gas Turbine Engine Lubricants - Short Duration Test

2020-02-20
CURRENT
ARP7355
This method is used for determining the volume swelling effect of aero-derived gas turbine engine lubricants on elastomeric materials. It provides insight into the expected performance of a candidate lubricants impact upon elastomer swell and provides data to determine if the candidate lubricant meets specification requirements. This ARP is based upon Federal Standard 791, Method 3604.
Standard

A Review of Literature on the Relationship Between Gas Turbine Engine Lubricants and Aircraft Cabin Air Quality

2016-09-12
CURRENT
AIR5784
There has been a recent upsurge in interest from the media concerning the quality of the environment within aircraft cabins and cockpits especially in the commercial world1-4. This has included (although by no means been limited to) the air quality, with particular reference to the alleged effects of contamination from the aircraft turbine lubricant. Possible exposure to ‘organophosphates’ (OPs) from the oil has raised special concerns from cabin crew. Such is the concern that government organisations around the world, including Australia, USA and UK, have set up committees to investigate the cabin air quality issue. Concern was also voiced in the aviation lubricants world at the way in which OP additives in turbine lubricants were being blamed in some reports for the symptoms being experienced by air crew and passengers. SAE Committee E-34 therefore decided that it should gather as much available information on the subject as possible.
Standard

A Review of Literature on the Relationship Between Gas Turbine Engine Lubricants and Aircraft Cabin Air Quality

2021-03-25
WIP
AIR5784A
There has been a recent upsurge in interest from the media concerning the quality of the environment within aircraft cabins and cockpits especially in the commercial world. This has included (although by no means been limited to) the air quality, with particular reference to the alleged effects of contamination from the aircraft turbine lubricant. Possible exposure to 'organophosphates' (OPs) from the oil has raised special concerns from cabin crew. Such is the concern that government organisations around the world, including Australia, USA and UK, have set up committees to investigate the cabin air quality issue. Concern was also voiced in the aviation lubricants world at the way in which OP additives in turbine lubricants were being blamed in some reports for the symptoms being experienced by air crew and passengers. SAE Committee E-34 therefore decided that it should gather as much available information on the subject as possible.
X