Refine Your Search

Topic

Search Results

Standard

Hydraulic Hybrid Terminology and Definitions

2012-11-21
CURRENT
J2898_201211
As the number of Hydraulic Hybrid Powertrain equipped motor vehicles has increased, the number of terms, abbreviations, and acronyms which describe various components of these systems has increased. For the sake of industry standardization and to bring some order to the proliferation of such terms, abbreviations, and acronyms, the SAE Truck and Bus Hydraulic Hybrid committee prepared this document.
Standard

SAE NODAL MOUNT

1992-02-01
HISTORICAL
J1134_199202
This SAE Recommended Practice establishes a single bolt pattern for the No. 1 clutch housing (see Figure 1) and the No. 2 clutch housing (see Figure 2). These four bolt patterns are designated to give commonality of mounting brackets in existing frame rails. The 420 mm (16.5 in) span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate commonly used clutches.
Standard

SAE NODAL MOUNT

1983-10-01
HISTORICAL
J1134_198310
This SAE Recommended Practice establishes a single bolt pattern for both No. 1 and No. 2 clutch housings (see Fig. 1). This four-bolt pattern is designated to give commonality of mounting brackets in existing frame rails. The 16.5 in span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate a 15.5 in two-plate clutch. The bolt pattern due to its symmetry allows reversing or inverting of brackets to attain change in vertical or horizontal positioning with fewer brackets. The phi (ϕ) symbol is for the convenience of the user in locating areas where technical revisions have been made to the previous issue of the report. If the symbol is next to the report title, it indicates a complete revision of the report.
Standard

Axle Efficiency Test Procedure

2001-04-27
CURRENT
J1266_200104
Data from this SAE Recommended Practice permit mapping axle efficiency and/or waste energy over the operating range of trucks, busses, and other highway vehicles based on truck chasses.
Standard

AXLE EFFICIENCY TEST PROCEDURE

1979-06-01
HISTORICAL
J1266_197906
Data from this procedure permits mapping axle efficiency and/or waste energy over the operating range of passenger cars, trucks, busses, and other highway vehicles to which axles are applied.
Standard

AXLE EFFICIENCY TEST PROCEDURE

1990-06-01
HISTORICAL
J1266_199006
Data from this procedure permit mapping axle efficiency and/or waste energy over the operating range of passenger cars, trucks, busses, and other highway vehicles.
Standard

Exhaust Brake Dynamometer Test and Capability Rating Procedure

2012-07-02
CURRENT
J2458_201207
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Manual Transmission Shift Patterns

2001-09-07
HISTORICAL
J1608_200109
Provide standard shift pattern guidelines for manual transmission shift controls in light, medium, and heavy trucks and buses.
Standard

Engine Retarder Dynamometer Test and Capability Rating Procedure

2012-07-02
CURRENT
J1621_201207
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

SNAP-ACCELERATION SMOKE TEST PROCEDURE FOR HEAVY-DUTY DIESEL POWERED VEHICLES

1996-02-01
HISTORICAL
J1667_199602
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
Standard

Snap-Acceleration Smoke Test Procedure for Heavy-Duty Diesel Powered Vehicles

2018-02-15
CURRENT
J1667_201802
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
Standard

Rating of Winches

1999-06-01
HISTORICAL
J706_199906
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for “free-spooling” may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control “free-spooling,” but will not be relied on to control or hold a load.
X