Refine Your Search

Topic

Search Results

Journal Article

Lightning Effects on Hydraulic Transport Elements in Composite Aircraft

2011-10-18
2011-01-2760
In this study, lightning effects on hydraulic transport elements in composite aircraft have been considered for the first time. Based on recent test results and analysis, several forms of possible structural damage and system component failures are presented. A unique approach in analysis has been taken to account that hydraulic transport elements, as a part of several aircraft systems, have a common interface with electrical wiring, and become complex electric networks. When an aircraft is exposed to a direct lightning strike, a metal skin on the wings and fuselage will conduct lightning currents in a way that only a small amount of induced electromagnetic energy will be present on hydraulic transport elements. So, in the past, hydraulic tubes, actuators, manifolds, and all other hydro-mechanical devices, as parts of various aircraft systems, have never been considered as lightning sensitive components.
Technical Paper

Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits

2007-07-09
2007-01-3276
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs, while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in extravehicular activity (EVA) systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper describes the design and manufacture of the prototype system. The potential significance and application of the system is also discussed.
Technical Paper

Trade Study of an Interface for a Removable/Replaceable Thermal Micrometeoroid Garment

2008-06-29
2008-01-1990
Effective thermal and micrometeoroid protection as afforded by the Thermal Micrometeoroid Garment (TMG) is critical in achieving safe and efficient missions. It is also critical that the TMG does not increase torque or decreased range of motion which can cause crewmember discomfort, fatigue, and reduced efficiency. For future exploration missions, removable and replaceable TMGs will allow the use of different pressure garment protective covers and TMG configurations for launch, re-entry, 0-G Extra Vehicular Activity (EVA), and lunar surface EVA. A study was conducted with the goal of developing high Technology Readiness Level (TRL), scalable, interface design concepts for TMG systems. The affects of TMG segmentation on mobility and donning were assessed. Closure mechanisms were investigated and tested to determine their operability after exposure to lunar dust. A TMG configuration with the optimum number of segments and location of interfaces was selected for the Mark III spacesuit.
Technical Paper

Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

2008-06-29
2008-01-2117
As part of NASA's initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet, passes over the astronaut's body, and is extracted at the astronaut's wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline.
Technical Paper

Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

2008-06-29
2008-01-2116
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. Also, the impact of MTSA on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA's Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Technical Paper

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2006-07-17
2006-01-2092
This paper summarizes the first 5 plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module of the International Space Station. The MCA provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O)) sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). Sample lines have been routed throughout the U.S. modules with valves to facilitate software-automated sequential sampling of the atmosphere in the various modules.
Technical Paper

Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

2005-07-11
2005-01-2865
A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand has developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). Our current data demonstrates an amine-based system volume which is competitive with existing technologies which use metal oxides (Metox) and lithium hydroxide sorbents. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

Integrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabatier Engineering Development Unit (EDU)

2005-07-11
2005-01-2864
This paper presents and discusses the results of an integrated 4-Bed Molecular Sieve (4BMS), mechanical compressor, and Sabatier Engineering Development Unit (EDU) test. Testing was required to evaluate the integrated performance of these components of a closed loop atmosphere revitalization system together with a proposed compressor control algorithm. A theoretical model and numerical simulation had been used to develop the control algorithm; however, testing was necessary to verify the simulation results and further refine the model. Hardware testing of a fully integrated system also provided a better understanding of the practical inefficiencies and control issues, which are unavailable from a theoretical model.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-Bed System (CAMRAS)

2009-07-12
2009-01-2441
Under a cooperative agreement with NASA, Hamilton Sundstrand has successfully designed, fabricated, tested and delivered three, state-of-the-art, solid amine prototype systems capable of continuous CO2 and humidity removal from a closed, habitable atmosphere. Two prototype systems (CAMRAS #1 and #2) incorporated a linear spool valve design for process flow control through the sorbent beds, with the third system (CAMRAS #3) employing a rotary valve assembly that improves system fluid interfaces and regeneration capabilities. The operational performance of CAMRAS #1 and #2 has been validated in a relevant environment, through both simulated human metabolic loads in a closed chamber and through human subject testing in a closed environment.
Technical Paper

EVA Exploration Support Using Integrated Navigation, Networking and Communications Systems

2007-07-09
2007-01-3087
In future lunar and Mars exploration missions the ability to provide the crewmember navigation information will be critical. Exploration demands that Extravehicular Activity (EVA) astronauts be provided the capability to operate with greater autonomy in accomplishing complex EVA missions than has been the case previously. Robust crew information interfaces and navigation support integral to the EVA spacesuit system are expected to be minimum requirements. Navigation support must allow the EVA crew to determine their position relative to EVA target locations, satellite imagery and maps and assist them in walking or riding to the desired targets on the planetary surface. Together, these needs suggest a requirement for an integrated system that combines data and voice communications, a high performance visual display, and navigation support in a design that is compatible with spacesuit environmental and packaging restrictions and with unique EVA crew interface demands.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-bed (CAMRAS)

2007-07-09
2007-01-3157
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations led by Hamilton Sundstrand is developing an amine based humidity and carbon dioxide (CO2) removal process and prototype equipment for Vision for Space Exploration (VSE) applications. This system employs thermally linked amine sorbent beds operating as a pressure swing adsorption system, using the vacuum of space for regeneration. The prototype hardware was designed based on a two fault tolerant requirement, resulting in a single system that could handle the metabolic water and carbon dioxide load for a crew size of six. Two, full scale prototype hardware sets, consisting of a linear spool valve, actuator and amine sorbent canister, have been manufactured, tested, and subsequently delivered to NASA JSC. This paper presents the design configuration and the pre-delivery performance test results for the CAMRAS hardware.
Technical Paper

Development Status of an EVA-sized Cycling Amine Bed System for Spacesuit Carbon Dioxide and Humidity Removal

2007-07-09
2007-01-3272
Under a NASA sponsored technology development activity, Hamilton Sundstrand has designed, fabricated, tested and delivered a prototype solid amine-based carbon dioxide (CO2) and water (H2O) vapor removal system sized for Extravehicular Activity (EVA) operation. The prototype system employs two alternating and thermally-linked solid amine sorbent beds to continuously remove CO2 and H2O vapor from a closed environment. While one sorbent bed is exposed to the vent loop to remove CO2 and water vapor, the other bed is exposed to a regeneration circuit, defined as either vacuum or an inert sweep gas stream. A linear spool valve, coupled directly to the amine canister assembly, is utilized to simultaneously divert the vent loop flow and regeneration circuit flow between the two sorbent beds.
Technical Paper

The Orion Air Monitor Performance Model; Dynamic Simulations and Accuracy Assessments in the CEV Atmospheric Revitalization Unit Application

2009-07-12
2009-01-2521
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
Technical Paper

Smoke Detection for the Orion Crew Exploration Vehicle

2009-07-12
2009-01-2542
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronics to space-qualified components, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Journal Article

The Orion Air Monitor; an Optimized Analyzer for Environmental Control and Life Support

2008-06-29
2008-01-2046
This paper describes the requirements for and design implementation of an air monitor for the Orion Crew Exploration Vehicle (CEV). The air monitor is specified to monitor oxygen, nitrogen, water vapor, and carbon dioxide, and participates with the Environmental Control Life Support System (ECLSS) pressure control system and Atmosphere Revitalization System (ARS) to help maintain a breathable and safe environment. The sensing requirements are similar to those delivered by the International Space Station (ISS) air monitor, the Major Constituent Analyzer or MCA (1, 2 and 3), and the predecessors to that instrument, the Skylab Mass Spectrometer (4, 5), although with a shift in emphasis from extended operations to minimized weight. The Orion emphasis on weight and power, and relatively simpler requirements on operating life, allow optimization of the instrument toward the mass of a sensor assembly.
X