Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Testing and Development of New Catalysts for Vapor Phase Ammonia Oxidation

2003-07-07
2003-01-2502
Catalytic oxidation is an effective means of controlling the build up of ammonia and other trace gas contaminants within closed spaces. However, it sometimes leads to the formation of noxious gases that need to be removed in post-treatment systems. In addition, ammonia removal is an issue when regeneration of water from wastewater is considered since ammonia is a byproduct of urea decomposition. For example, the VPCAR (Vapor Phase Catalytic Ammonia Reduction) advanced water processor system includes an oxidation reactor for the destruction of ammonia and of other volatile organics that are not separated out in the evaporator due to their volatility. The oxidation of ammonia may produce nitrogen, nitrogen oxides (NO and NO2), nitrous oxide (N2O) and water vapor. The Spacecraft Maximum Allowable Concentration (SMAC) for NO and NO2 are respectively 4.5 and 0.5 ppm whereas the Threshold Limit Value (TLV) for N2O is 25 ppm.
Technical Paper

Status of ISS Oxygen Generation and Water Processor Assemblies

2003-07-07
2003-01-2691
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the international Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, hand wash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Development Status and Maintainability Features of ISS Oxygen Generation and Water Processor Assemblies

2001-07-09
2001-01-2314
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Design and Operation of a Low Pressure Electrolyzer (LPE) for Submarine Applications

2001-07-09
2001-01-2441
A Low Pressure Electrolyzer (LPE) is being developed to provide metabolic oxygen aboard US nuclear submarines. The system is derived from a more complex system already developed for the Virginia Class of attack submarines. The LPE generates up to 250 standard cubic feet per hour (SCFH) of oxygen at ambient pressure through electrolysis of water utilizing SPE® (Solid Polymer Electrolyte) technology. The hydrogen is generated at pressures suitable for disposal overboard. The system operates unattended which minimizes crew workload, and can safely shut down without crew intervention. Generating oxygen at ambient pressure significantly reduces risk to personnel and greatly simplifies the system. Reliability, maintainability, safety, and ease of operation are major system design drivers.
Technical Paper

Development, Testing, and Packaging of a Redundant Regenerable Carbon Dioxide Removal System (RRCRS)

2002-07-15
2002-01-2530
Enhancements to the Regenerable Carbon Dioxide Removal System (RCRS) have undergone full-scale, pre-prototype development and testing to demonstrate a redundant system within the volume allotted for the RCRS on the Space Shuttle Orbiter. The concept for a Redundant Regenerable Carbon Dioxide Removal System (RRCRS) utilizes the existing canister of the RCRS, but partitions it into two, independent, two-bed systems. This partitioning allows for two, fully capable RCRS units to be packaged within the original volume, thus reducing stowage volume and launch weight when compared to the flight RCRS plus the backup LiOH system. This paper presents the results of development and testing of a full-scale, pre-prototype RRCRS and includes an overview of the design concept for a redundant system that can be packaged within the existing envelope.
Technical Paper

Sabatier CO2 Reduction System Design Status

2002-07-15
2002-01-2531
Carbon dioxide reduction in a closed loop life support system recovers water from otherwise waste carbon dioxide and hydrogen. Incorporation of a carbon dioxide reduction assembly (CRA) into the International Space Station life support system frees up thousands of pounds of payload capacity in the supporting Space Shuttle that would otherwise be required to transport water. Achievement of this water recovery goal requires coordination of the CRA design to work within the existing framework of the interface systems that are either already on orbit or well advanced in their development; namely, the Oxygen Generator Assembly (OGA), Carbon Dioxide Removal Assembly (CDRA) and Water Processor Assembly (WPA). The Oxygen Generation System (OGS) rack is in its final design phase and is scarred to accept later installation of the CRA.
Technical Paper

Development Status of ISS Water Processor Assembly

2002-07-15
2002-01-2363
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene wastewaters. All planned development testing has been completed and this paper provides the status of the development activities and results for the WPA.
Technical Paper

Development Status of the ISS Oxygen Generation Assembly and Key Components

2002-07-15
2002-01-2269
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop, an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. The OGA has been under development at HSSSI for 3 years. This paper will update last year's ICES paper on the design/development of the OGA.
Technical Paper

Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

2005-07-11
2005-01-2863
A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gas/liquid separation and pump the liquid from 69 kPa (10 psia) at the gas/liquid interface to 124 kPa (18 psia) at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump (DSP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor[1].
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

2004-07-19
2004-01-2446
When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
Technical Paper

Development Status and Safety Features of ISS Oxygen Generation and Water Processor Assemblies

2000-07-10
2000-01-2349
Hamilton Sundstrand Space Systems International, Inc. HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recover System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Development of a Rotary Separator Accumulator for Use on the International Space Station

2002-07-15
2002-01-2360
A Rotary Separator/Accumulator (RSA) has been developed to function as a phase separator and accumulator in the Oxygen Generator Assembly (OGA) in the microgravity environment of the International Space Station. The RSA design utilizes a fixed housing with rotating disks to create a centrifugal force field to separate hydrogen gas from water. The volume within the assembly is utilized to act as an accumulator for the OGA. During the development of the RSA, design refinements were made to meet the changing system operating requirements. Two proof of concept (POC) units and a “flight-like” development unit were fabricated and tested as system requirements evolved. Testing of the first POC unit demonstrated that a combined rotary separator and accumulator was feasible and showed areas where improvements could be made. The second POC unit incorporated a fifty percent volume increase to accommodate changing system requirements and geometry changes to help reduce power consumption.
X