Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Status of ISS Oxygen Generation and Water Processor Assemblies

2003-07-07
2003-01-2691
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the international Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, hand wash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Performance of WPA Conductivity Sensor During Two-Phase Fluid Flow in Microgravity

2003-07-07
2003-01-2693
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two- phase fluid flow (gas/liquid) in microgravity. The source for this sensitivity is the fact that free gas will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in 1-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plane (KC-135) to measure the offset, which was determined to range between 0 and 50%. This range approximates the offset experienced in 1-g gas sensitivity testing.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

Development Status and Maintainability Features of ISS Oxygen Generation and Water Processor Assemblies

2001-07-09
2001-01-2314
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Design and Operation of a Low Pressure Electrolyzer (LPE) for Submarine Applications

2001-07-09
2001-01-2441
A Low Pressure Electrolyzer (LPE) is being developed to provide metabolic oxygen aboard US nuclear submarines. The system is derived from a more complex system already developed for the Virginia Class of attack submarines. The LPE generates up to 250 standard cubic feet per hour (SCFH) of oxygen at ambient pressure through electrolysis of water utilizing SPE® (Solid Polymer Electrolyte) technology. The hydrogen is generated at pressures suitable for disposal overboard. The system operates unattended which minimizes crew workload, and can safely shut down without crew intervention. Generating oxygen at ambient pressure significantly reduces risk to personnel and greatly simplifies the system. Reliability, maintainability, safety, and ease of operation are major system design drivers.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Development Status of the ISS Oxygen Generation Assembly and Key Components

2002-07-15
2002-01-2269
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop, an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. The OGA has been under development at HSSSI for 3 years. This paper will update last year's ICES paper on the design/development of the OGA.
Technical Paper

Development of a Rotary Separator Accumulator for Use on the International Space Station

2002-07-15
2002-01-2360
A Rotary Separator/Accumulator (RSA) has been developed to function as a phase separator and accumulator in the Oxygen Generator Assembly (OGA) in the microgravity environment of the International Space Station. The RSA design utilizes a fixed housing with rotating disks to create a centrifugal force field to separate hydrogen gas from water. The volume within the assembly is utilized to act as an accumulator for the OGA. During the development of the RSA, design refinements were made to meet the changing system operating requirements. Two proof of concept (POC) units and a “flight-like” development unit were fabricated and tested as system requirements evolved. Testing of the first POC unit demonstrated that a combined rotary separator and accumulator was feasible and showed areas where improvements could be made. The second POC unit incorporated a fifty percent volume increase to accommodate changing system requirements and geometry changes to help reduce power consumption.
Technical Paper

The Development of the Wiped-Film Rotating-Disk Evaporator for the Reclamation of Water at Microgravity

2002-07-15
2002-01-2397
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
Technical Paper

Development Status and Safety Features of ISS Oxygen Generation and Water Processor Assemblies

2000-07-10
2000-01-2349
Hamilton Sundstrand Space Systems International, Inc. HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recover System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
X