Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Heat Rejection/Retention Characteristics of a Re-deployable Radiator for Venus Exploration Mission

2007-07-09
2007-01-3241
This paper experimentally and analytically evaluates the heat rejection/retention performance of a reversible thermal panel (RTP) which can autonomously change thermal performance depending on its own thermal conditions. The RTP is considered as a candidate methodology for thermal control of Venus mission, PLANET-C, in order to save survival heater power. An RTP prototype was tested and evaluated. An analytical thermal model of the RTP was also developed, and basic performances of the RTP were evaluated. Thermal performance of the RTP when applied to the longwave camera (LIR) of the PLANET-C was evaluated with an analytical thermal model as functions of fin deployment directions and rear surface properties of the RTP's fin. The analytical results showed that the RTP can save heater power in comparison to a conventional radiator.
Technical Paper

Heat Pipes with Self-Rewetting Fluids for Space Applications

2008-06-29
2008-01-1954
Self-rewetting fluids, i.e. dilute aqueous alcoholic solutions with unique surface tension behavior, have been proposed as working fluids for terrestrial and space heat pipes. Experiments have been carried out in normal gravity and in low-gravity conditions with tubular heat pipes, thin flat heat pipes for thermal management in electronic devices, and flexible, inflatable and deployable radiator panels for space applications. Self-rewetting heat pipes exhibit, in general, better thermal performances in comparison with water heat pipes. Current developments are focused on self-rewetting brines, studied as candidate potential heat transfer fluids for space applications. Activities are in progress to perform experiments in space with a small technological payload onboard a microsatellite developed by the Italian Space Agency.
Technical Paper

Development of a Flexible Thermal Control Device with High-Thermal-Conductivity Graphite Sheets

2003-07-07
2003-01-2471
This paper describes a new passive thermal control device-a Reversible Thermal Panel (RTP)-which changes its function reversibly from a radiator to a solar absorber by deploying/stowing the radiator/absorber reversible fin. The RTP consists of Highly Oriented Graphite Sheets (HOGSs), which have characteristics of high thermal conductivity, flexibility and light weight, as thermal transport units, which can transport the heat from equipment to reversible fin, and of a Shape - Memory Alloy (SMA) as a passively rotary actuator to deploy/stow the reversible fin. The RTP prototype model was designed and fabricated using HOGSs, a honeycomb base palate, and a prototype reversible rotary actuator. The heat rejection performance of the RTP as a radiator and the heat absorption performance as an absorber were evaluated by thermal vacuum tests and thermal analyses. The autonomous thermal controllability achieved using the prototype rotary actuator was also evaluated.
Technical Paper

Smart Radiation Device: Design of an Intelligent Material with Variable Emittance

2001-07-09
2001-01-2342
Variable emittance radiator, called SRD, is a thin and light ceramic tile whose infrared emissivity is varied proportionally by its own temperature. Bonded only to the external surface of spacecrafts, it controls the heat radiated to deep space without electrical or mechanical parts such as the thermal louver. By applying this new device for thermal control of spacecrafts, considerable weight and cost reductions can be achieved easily. In this paper, the new design and the new manufacturing process of the SRD and its optical properties, such as the total hemispherical emittance and the solar absorptance, are described. By introducing this new design and manufacturing process, the weight of the SRD is easily decreased, keeping its strength and the optical properties.
Technical Paper

New Proposal of Piston Skirt Form using Multi Objective Optimization Method

2011-04-12
2011-01-1079
A multi-objective optimization model using a piston behavior simulation for the prediction of NV, friction and scuffing was created. This model was used to optimize the piston skirt form, helping to enable well-balanced forms to be sought. Optimization calculations, involving extended analyses and numerous design variables, conventionally necessitate long calculation times in order to achieve adequate outcomes. Because of this, in the present project data was converted into functions in order to help enable the complex piston skirt form to be expressed using a small amount of coefficients. Using the limit values for manufacturability and the degree of contribution to the target functions, the scope of design variables was restricted, and the time necessary for the analysis was significantly reduced. This has helped to enable optimal solutions to be determined within a practical time frame.
Technical Paper

Design and Fabrication of a Passive Deployable/Stowable Radiator

2006-07-17
2006-01-2038
A lightweight 100 W-class deployable radiator with environment-adaptive functions has been investigated. This radiator - Reversible Thermal Panel (RTP) - is composed of flexible high thermal conductive materials and a passive reversible actuator, and it changes its function from a radiator to a solar absorber by deploying/stowing the reversible fin upon changes in the heat dissipation and thermal environment. The RTP is considered one of the candidates of thermal control methodology for the Japanese Venus mission “Planet-C”, which will be launched in 2010 to save its survival heater power. In this paper, design and fabrication of the RTP proto-model (PM) and the test results of deployment/stowing characteristics in an atmospheric condition are reported. Thermal performance estimation with thermal analytical model of the RTP PM is also presented.
X