Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Sedan Part 2: CFD Results

2017-03-28
2017-01-1528
Cooling drag is a metric that measures the influence of air flow travelling through the open grille of a ground vehicle on overall vehicle drag, both internally (engine air flow) and externally (interference air flow). With the interference effects considered, a vehicles cooling drag can be influenced by various air flow fields around the vehicle, not just the air flow directly entering or leaving the engine bay. For this reason, computational fluid dynamics (CFD) simulations are particularly difficult. With insights gained from a previously conducted set of experimental studies, a CFD validation effort was undergone to understand which air flow field characteristics contribute to CFD/test discrepancies. A Lattice-Boltzmann Large Eddy Simulation (LES) method was used to validate several test points. Comparison using integral force values, surface pressures, and cooling pack air mass flows was presented.
Technical Paper

Statistical Energy Analysis Applications for Structureborne Vehicle NVH

2010-10-17
2010-36-0526
Statistical Energy Analysis (SEA) is an established high-frequency analysis technique for generating acoustic and vibration response predictions in the automotive, aerospace, machinery, and ship industries. SEA offers unique NVH prediction and target-setting capabilities as a design tool at early stages of vehicle design where geometry is still undefined and evolving and no prototype hardware is available yet for testing. The exact frequencies at which SEA can be used effectively vary according to the size and the amount of damping in the vehicle subsystems; however, for automotive design the ability to predict acoustic and vibration responses due to both airborne and structure-borne sources has been established to frequencies of 500 Hz and above. This paper presents the background, historical use, and current industrial applications of structure-borne SEA. The history and motivation for the development of structure-borne SEA are discussed.
Technical Paper

Constrained Control of UAVs Using Adaptive Anti-windup Compensation and Reference Governors

2009-11-10
2009-01-3097
Gliders can climb to substantial altitudes without employing any on-board energy resources but using proper piloting skills to utilize rising air currents called thermals. Recent experiments on small Unmanned Aerial Vehicles (UAVs) indicate a significant potential to increase both the flight velocity and the range of gliders by means of such maneuvers. In these experiments the velocity to approach a thermal has been recognized as a critical performance factor, and is chosen as the controlled variable. Accurate longitudinal controllers are required to track the optimal flight trajectories generated using path planning algorithms. These controllers are challenged by the presence of uncertain and time-varying aircraft dynamics, gust disturbances, and control actuator limitations.
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
Technical Paper

Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process

2011-04-12
2011-01-0245
Computer Aided Engineering (CAE) has become a vital tool for product development in automotive industry. Increasing computer models are developed to simulate vehicle crashworthiness, dynamic, and fuel efficiency. Before applying these models for product development, model validation needs to be conducted to assess the validity of the models. However, one of the key difficulties for model validation of dynamic systems is that most of the responses are functional responses, such as time history curves. This calls for the development of an objective metric which can evaluate the differences of both the time history and the key features, such as phase shift, magnitude, and slope between test and CAE curves. One of the promising metrics is Error Assessment of Response Time Histories (EARTH), which was recently developed. Three independent error measures that associated with physically meaningful characteristics (phase, magnitude, and slope) were proposed.
Technical Paper

LNT+SCR Catalyst Systems Optimized for NOx Conversion on Diesel Applications

2011-04-12
2011-01-0305
A laboratory study was performed to assess the effectiveness of LNT+SCR systems for NOx control in lean exhaust. The effects of the catalyst system length and the spatial configuration of the LNT & SCR catalysts were evaluated for their effects on the NOx conversion, NH₃ yield, N₂O yield, and HC conversion. It was found that multi-zone catalyst architectures with four or eight alternating LNT and SCR catalyst zones had equivalent gross NOx conversion, lower NH₃ and N₂O yield, and significantly higher net conversion of NOx to N₂ than an all-LNT design or a standard LNT+SCR configuration, where all of the SCR volume is placed downstream of the LNT. The lower NH₃ emissions of the two multi-zone designs relative to the standard LNT+SCR design were attributed to the improved balance of NOx and NH₃ in the SCR zones.
Technical Paper

Computational Aeroacoustics of Mufflers for Exhaust Air Rush Prediction and Experimental Validation

2017-03-28
2017-01-1311
Air rush noise is exhaust gas driven flow-induced noise in the frequency range of 500-6500 Hz. It is essential to understand the flow physics of exhaust gases within the mufflers in order to identify any counter measures that can attenuate this error state. This study is aimed at predicting the flow physics and air rush noise of exhaust mufflers in the aforementioned frequency range at a typical exhaust flow rate and temperature. The study is performed on two different muffler designs which show a significant air rush noise level difference when tested on the vehicle. The transient computational study was performed using DES with 2nd order spatial discretization and 2nd order implicit scheme for temporal discretization in StarCCM+. To compare with test data, a special flow test stand is designed so that all high and low frequency contents emanating from the engine are attenuated before the flow enters the test part.
Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

2017-03-28
2017-01-1304
For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Journal Article

Effect of Biodiesel (B20) on Vehicle-Aged Engine Oil Properties

2010-10-25
2010-01-2103
High concentrations of diesel fuel can accumulate in the engine oil, especially in vehicles equipped with diesel particle filters. Fuel dilution can decrease the viscosity of engine oil, reducing its film thickness. Higher concentrations of fuel are believed to accumulate in oil with biodiesel than with diesel fuel because biodiesel has a higher boiling temperature range, allowing it to persist in the sump. Numerous countries are taking actions to promote the use of biodiesel. The growing interest for biodiesel has been driven by a desire for energy independence (domestically produced), the increasing cost of petroleum-derived fuels, and an interest in reducing greenhouse gas emissions. Biodiesel can affect engine lubrication (through fuel dilution), as its physical and chemical properties are significantly different from those of petrodiesel. Many risks associated with excessive biodiesel dilution have been identified, yet its actual impact has not been well quantified.
Technical Paper

Redesign of an Exhaust Manifold Outlet Fastener Using Robust Design Techniques

2000-03-06
2000-01-0917
An L16 orthogonal array parameter Design of Experiment (DOE) evaluated six design parameters of the mating thread interface between the exhaust manifold outlet flange and jointing stainless steel fastener. The objective of this study was to identify optimal parameters for the redesign the thread interface by ensuring 100% seating of the fastener into the manifold flange (here after referred to as stud seating). Since the current fastener and manifold outlet flange interface threads do not always achieve the design objectives, due in part to a form of abrasive wear, consideration was given to develop a testing strategy that would quantify the amount of remaining thread engagement for a given stud length. This testing strategy ensured that the control parameters considered in this experiment would reveal main effects and interactions between the stud and tapped hole threads thus providing the necessary parameters for the redesign on the joint threads.
Technical Paper

SAE J3168: A Joint Aerospace-Automotive Recommended Practice for Reliability Physics Analysis of Electrical, Electronic and Electromechanical Components

2019-04-02
2019-01-1252
This paper describes a joint SAE automotive and aerospace Recommended Practice SAE J3168 now in development to standardize a process for Reliability Physics Analysis. This is a science-based approach to implement Physics-of-Failure research in conducting durability simulations in a Computer Aided Engineering Environment. It is used to calculate failure mechanism susceptibilities and estimate the likelihood of failure and the expected durability life of Electrical, Electronic and Electromechanical components and equipment, due to stresses such as mechanical shock, vibration, temperature cycling, etc. Reliability Physics Analysis is based on the material science principle of stress driven damage accumulation in materials. The process enables the identification of potential failure risks early in the design phase so that such risks can be designed out in order to efficiently design high reliable and robustness into electronic products.
Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
Technical Paper

The Development of Acoustics Compressor Maps and Computational Aeroacoustic Method to Evaluate Turbocharger Inlet Flow Control Devices

2017-09-19
2017-01-2071
The advent of turbochargers and the Eco-Boost technology at Ford in gasoline engines creates new challenges that need to be addressed with innovative designs. One of them is flow induced noise caused by airflow entering the turbocharger during off design operation. At certain vehicle operation conditions, the mass flow rate and pressure ratio are such that compressor wheel can generate a wide range of acoustic frequencies. Characterization of ‘whistles’ or pure tonal noises, ‘whoosh’ or broad band frequency noise caused by flow separation from the blade surfaces, and chirps, where the frequency increases or decreases with time are a few of the common error states. Understanding the fundamental mechanisms of such noise generation is necessary for developing effective countermeasures for the noise source generation. Computational Aero-Acoustic (CAA) analyses are performed to study the effects of inlet and outlet conditions to find the source of the noise.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Sedan Part 1: Test Results

2017-03-28
2017-01-1521
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag (engine airflow drag). Furthermore, engine airflow is known to be capable of influencing upstream external airflow (interference drag). The combined effect of these phenomena is commonly referred to as cooling drag, which generally contributes up to 10% of total vehicle drag. Due to this coupled nature, cooling drag is difficult to understand as it contains influences from multiple locations around the vehicle. A good understanding of the sources of cooling drag is paramount to drive vehicle design to a low cooling drag configuration. In this work, a production level Lincoln MKZ was modified so that a number of variables could be tested in both static ground and moving ground wind tunnel conditions. All tests were conducted at 80 MPH.
Technical Paper

Energy Storage Requirements and Implementation for a Lunar Base Microgrid

2023-09-05
2023-01-1514
Future lunar missions will utilize a Lunar DC microgrid (LDCMG) to construct the infrastructure for distributing, storing, and utilizing electrical energy. The LDCMG’s energy management, of which energy storage systems (ESS) are crucial components, will be essential to the success of the missions. Standard system design currently employs a rule-of-thumb approach in which design methodologies rely on heuristics that may only evaluate local power balancing requirements. The Hamiltonian surface shaping and power flow control (HSSPFC) method can also be utilized to analyze and design the lunar LDCMG power distribution network and ESS. In this research, the HSSPFC method will be utilized to determine the ideal energy storage requirements for ESS and the optimally distributed control architecture.
X