Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Technical Paper

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-07-17
2006-01-2264
The addition of metal nanoparticles to standard coolant fluids dramatically increases the thermal conductivity of the liquid. The properties of the prepared nanofluids will allow for lighter, smaller, and higher efficiency spacecraft thermal control systems to be developed. Nanofluids with spherical or rod-shaped metal nanoparticles were investigated. At a volume concentration of 0.5%, the room temperature thermal conductivity of a 2 nm spherical gold nanoparticle-water solution was increased by more than 10% over water alone. Silver nanorods increased the thermal conductivity of ethylene glycol by 53% and water by 26%.
Technical Paper

Engine Fuels and Lubrication Systems at Nakajima Aircraft Co. from 1936 - 1945

1988-10-01
881610
The authors worked in the Engine Department at Nakajima Aircraft Co. from 1936 to 1945. Nakagawa was in the Engine Design Department, where he was involved in designing the air-cooled, radial double-row 14-cylinder 1,100 hp Sakae Model 20 engine and the radial 18-cylinder 1,800 - 2,000 hp Homare engine. Mizutani was a field engineer for these two engines and other engines. During that period we gained much experience in fuel and lubrication systems. Before the authors joined Nakajima, the company's engine development team had already developed a carburetor-based fueling system, which was subsequently used in all Nakajima engines. From 1941 on, all newly designed engines had to use 87-92 motor octane fuel by order of the Army and Navy. It was a very difficult task to change the engine specifications to meet this requirement, particularly for the Homare engine, which was initially designed for 100-octane fuel. The authors explain various steps taken to overcome this difficulty.
X