Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Multifunctional System for Trace Gas Contaminants Removal

2009-07-12
2009-01-2525
The Atmospheric Revitalization System (ARS) provides carbon dioxide removal, trace contaminant control, and gas constituent analysis. In this field, the interest of RecycLAB [5], the TAS-I Advanced Live Support Research & Development laboratory is directed to trace gas contaminants removal and monitoring. During manned space mission, the decontamination of cabin or rack air after contingency events such as fire or pyrolysis is a priority for the crew safety. In this paper, basic zeolites, obtained by impregnation of common zeolites with a basic oxide, are used to remove acid gas contaminants from air stream. A multi-functional system, able to accommodate reactors of different shape, characteristics and set-up, is used at this purpose. This breadboard, called ZEUS (Zeolites for an Environmental-control Unit in Space), is made of AISI 316L stainless steel and consists of a closed loop, in which the inner volume is completely isolated from the external environment.
Technical Paper

Real-Time Predictive Modeling of Combustion and NOx Formation in Diesel Engines Under Transient Conditions

2012-04-16
2012-01-0899
The present work has the aim of developing a fast approach for the predictive calculation of in-cylinder combustion temperatures and NOx formation in diesel engines, under steady state and transient conditions. The model has been tested on a PC, and found to require very little computational time, thus suggesting it could be implemented in the ECU (Engine Control Unit) of engines for model-based control tasks. The method starts with the low-throughput predictive combustion model that was previously developed by the authors, which allows the predictive estimation of the heat-release rate and of the in-cylinder pressure trace to be made on the basis of the injection parameters and of a few quantities measured by the ECU, such as the intake manifold pressure and temperature.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
X