Refine Your Search

Topic

Search Results

Standard

Guide for Evaluating Combustion Hazards in Aircraft Oxygen Systems

2014-01-29
WIP
AIR825/13A
This guide is intended to promote safe designs, operations and maintenance on aircraft and ground support oxygen systems. This is also a summary of some work by the ASTM G 4 Committee related to oxygen fire investigations and design concerns to reduce the risk of an oxygen fire. There have been many recent technological advances and additional test data is available for evaluating and controlling combustion hazards in oxygen equipment. Standards that use this new information are rapidly evolving. A guide is needed to assist organizations and persons not completely familiar with this process to provide oxygen systems with minimum risks of combustion. This guide does not necessarily address all the detailed issues and provide all data that will be needed. For a complete analysis, supplemental publications need to be consulted. This guide does discuss the basics of oxygen systems fire hazards. The hazard analysis process is discussed and a simple example to explain this process.
Standard

Liquid Oxygen Systems

2014-10-21
WIP
AIR825/5B
This Aerospace Information Report provides general information to aircraft designers and engineers, regarding LOX, its properties, its storage and its conversion to gas. Much useful information is included herein for aircraft designers regarding important design considerations for a safe and effective installation to an aircraft. The associated ground support equipment needed to support operations of LOX equipped aircraft is also discussed. It is important to realize that LOX equipped aircraft cannot be supported unless this support infrastructure is also available. A significant part of this document will address the specific advantages, disadvantages and precautions relating to LOX systems. These are important issues that must be considered in deciding which oxygen system to install to the aircraft. Also, many commercial and military aircraft use aeromedical LOX equipment that is mostly portable equipment.
Standard

On Board Oxygen Generating Systems - Other Technologies

2013-03-07
WIP
AIR825/7
This AIR provides an overview of several emerging technologies for on board oxygen generation. It complements AIR 825/6, which covers pressure swing adsorption using zeolite molecular sieve beds to concentrate and separate oxygen from atmospheric gases. Topics covered here include use of dense ion conductive ceramics, electrolysis of water, high pressure chemical generation, membrane separations, and use of carbon based molecular seive beds.
Standard

Oxygen Sensor Technologies

2014-10-23
WIP
AIR5933
This AIR5933 gives an overview of contemporary technologies to determine the oxygen concentration respectively partial pressure in air. The aerospace application and its special constraints have been emphasized regarding weight, power supply, overall size, reliability and safety, cost and useful life.
Standard

FAR – Regulatory Requirements Covering the Use of Breathing Oxygen in Aircraft

2016-06-22
CURRENT
AIR1389B
This report presents, paraphrased in tabular format, an overview of the Federal Aviation Regulations (FAR) for aircraft oxygen systems. It is intended as a ready reference for those considering the use of oxygen in aircraft and those wishing to familiarize themselves with the systems requirements for existing aircraft. This document is not intended to replace the oxygen related FAR but rather to index them in some order. For detailed information, the user is referred to the current issue of the relevant FAR paragraph referenced in this report.
Standard

Regulatory Requirements Covering the Use of Breathing Oxygen in Aircraft

2002-02-15
HISTORICAL
AIR1389A
This report presents, paraphrased in tabular format, an overview of the Federal Aviation Regulations (FAR) and the Joint Aviation Regulations (JAR) for aircraft oxygen systems. It is intended as a ready reference for those considering the use of oxygen in aircraft and those wishing to familiarize themselves with the systems requirements for existing aircraft. This document is not intended to replace the oxygen related FAR/JAR but rather to index them in some order. For detailed information, the user is referred to the current issue of the relevant FAR/JAR paragraph referenced in this report.
Standard

Oxygen considerations for flight into high elevation airports

2015-11-30
WIP
ARP6527
The scope of this document is to provide guidance concerning the use of oxygen when flying into and out of high elevation airports. Normally for aircraft operations that fly at high altitude, oxygen requirements involving a decompression are generally easy to understand and follow because of the increased delta between cabin and ambient pressures. This document is intended to address a transition zone where cabin and ambient pressures are closely the same and oxygen usage can be compounded by physiologic subjectivity that often accompanies hypoxia. This transition zone is further diluted by regulations which are based not on science but rather sociological mores often not supported by empirical science. An example of this is reflected by differential regulatory requirements between CFR’s 91, 121 and 135. Operators who fly into these high altitude airports will undoubtedly be required to address the inherent threats and errors associated with this transition zone.
Standard

When and How Shall Oxygen be Used on Aircraft”

2015-09-22
WIP
AIR6256
The aim of this document is to provide a comprehensive synopsis of regulations applicable to aircraft oxygen systems. The context of physiological requirements, international regulations, operational requirements and airworthiness standards is shown to understand the role of aircraft oxygen systems and to demonstrate under which circumstances is needed on aircraft. With regards to National Aviation Regulations States are committed to the Convention on International Aviation (Chicago Convention). The majority of states have adopted, with some deviations, FAA and EASA systems including operational and airworthiness requirements. Accordingly the extent of this document is primarily focused on FAA/EASA requirements.
Standard

Oxygen System Integration and Performance Precautions

2003-03-25
CURRENT
AIR825/12A
Oxygen system integration and performance precautions are in particularly dependent on applicable sections of airworthiness requirements per FAR/JAR 25. In this document information will be provided on common principles and good practices regarding design criteria, installation, manufacturing, safety aspects and system handling during maintenance and inspection.
Standard

Oxygen System Integration and Performance Precautions

2002-04-01
HISTORICAL
AIR825/12
Oxygen system integration and performance precautions are in particularly dependent on applicable sections of airworthiness requirements per FAR/JAR 25. In this document information will be provided on common principles and good practices regarding design criteria, installation, manufacturing, safety aspects and system handling during maintenance and inspection.
Standard

Performance Requirements for Full Face Quick Donning Masks

2018-04-04
WIP
AS6814
Purpose of this standard is to provide minimum performance requirements of a Full Face Quick Donning Mask Assembly (FFQDM) with integrated regulator including appropriate stowage facility regarding functionality under conditions of aircraft environments. Function and performance requirements shall take into account varying modes of use and handling during aircraft operation according to operational requirements.
Standard

Carry-On Portable Oxygen Concentrators

2012-06-06
CURRENT
AS8059
This SAE Aerospace Standard (AS) applies to a personal, portable oxygen concentrator (POC) to be supplied and used by a passenger requiring supplemental oxygen therapy while traveling on board civil, commercial, or personal aircraft. It covers a POC during both self-powered battery operation and while powered from an aircraft seat’s electrical power through the use of an accessory adapter. The POC is not intended to be connected to the aircraft’s oxygen systems or to be used by any aircraft personnel in any method of treatment or first aid of the general flying public.
Standard

Minimum Performance Standard for a Cabin Occupant Personal Oxygen Dispensing Unit for use from 40,000 to 45,000 Feet

2013-02-25
WIP
AS5727
This Aerospace Standard (AS5727) will provide the basis for a certification approach and contain the methods or criteria for verification of performance required of Oxygen Dispensing Units for use by cabin occupants in the range of 40,000 to 45,000 ft. cabin altittude. 1.1 Purpose - This AS is intended to identify the performance required of Personal Oxygen Dispensing Units in the range of 40,000 to 45,000 ft.
Standard

Guidelines for Human Subject Testing

2019-01-02
WIP
AIR6978
The aim of this document is to establish a standardized approach for Human Subject Testing considering varying performance requirements of different user groups on aircraft as Flight Crew, Cabin Crew and Passengers. The document will provide guidance for definition of significant topics relevant to equipment and system certification. The document will include information regarding ethical aspects, criteria to select human subjects for testing, safety of test subjects, requirements to medical personnel to attend tests and in particular if humans are exposed to elevated altitudes. Recommendation will be provided regarding test result monitoring and data validity
X