Refine Your Search

Topic

Search Results

Standard

ELECTROMAGNETIC COMPATIBILITY ON GAS TURBINE ENGINES FOR AIRCRAFT PROPULSION

2008-08-25
HISTORICAL
AIR1423
The purpose of this AIR is to acquaint the aerospace industry with problems in attaining electromagnetic compatibility on gas turbine engines, particularly as used in aircraft. It is also the purpose of this AIR to present guidelines for the application of EMC controls to the engine, to its components which of necessity must operate in very hostile environments and to its interface with the aircraft.
Standard

Electromagnetic Compatibility on Gas Turbine Engines for Aircraft Propulsion

2023-02-20
CURRENT
AIR1423A
The purpose of this AIR is to acquaint the aerospace industry with problems in attaining electromagnetic compatibility on gas turbine engines, particularly as used in aircraft. It is also the purpose of this AIR to present guidelines for the application of EMC controls to the engine, to its components which of necessity must operate in very hostile environments and to its interface with the aircraft.
Standard

Electromagnetic Compatibility Control Requirements Systems

2013-03-25
CURRENT
ARP4242A
This SAE Aerospace Recommended Practice (ARP) establishes overall system electromagnetic compatibility (EMC) control requirements. EMC includes the following: a Electromagnetic Environmental Effects (E3) b Electrostatic Discharge (ESD) c Electromagnetic Interference (EMI) d Electromagnetic Vulnerability (EMV) e Electromagnetic Pulse (EMP) f Hazards of Electromagnetic Radiation to Ordnance (HERO) g Hazards of Electromagnetic Radiation to Personnel (HERP) h Hazards of Electromagnetic Radiation to Fuels (HERF) i High Intensity Radiated Fields (HIRF) j Lightning Protection k Static Electricity I TEMPEST This document is intended to be used for the procurement of land, sea, air, or space systems by any procurement activity. Tailoring of specific requirements is necessary and Appendix A has been provided for guidance.
Standard

Electromagnetic Compatibility Control Requirements Systems

1999-08-01
HISTORICAL
ARP4242
This SAE Aerospace Recommended Practice (ARP) establishes overall system electromagnetic compatibility (EMC) control requirements. EMC includes the following: a Electromagnetic Environmental Effects (E3) b Electrostatic Discharge (ESD) c Electromagnetic Interference (EMI) d Electromagnetic Vulnerability (EMV) e Electromagnetic Pulse (EMP) f Hazards of Electromagnetic Radiation to Ordnance (HERO) g Hazards of Electromagnetic Radiation to Personnel (HERP) h Hazards of Electromagnetic Radiation to Fuels (HERF) i High Intensity Radiated Fields (HIRF) j Lightning Protection k Static Electricity l TEMPEST This document is intended to be used for the procurement of land, sea, air, or space systems by any procurement activity. Tailoring of specific requirements is necessary and Appendix A has been provided for guidance.
Standard

Flight Line Grounding and Bonding of Aircraft

1999-01-01
HISTORICAL
ARP4043A
This ARP provides the rationale and theory of charges being present on aircraft while on the ground. The necessary implementation of safety practices are explained and defined.
Standard

Methods of Achieving Electromagnetic Compatibility of Gas Turbine Engine Accessories, for Self-Propelled Vehicles

2009-11-22
HISTORICAL
AIR1425A
This SAE Aerospace Information Report (AIR) is a description of methods to be employed to achieve Electromagnetic Compatibility (EMC) of gas turbine engine accessories. Its primary objectives are to aid those system designers of gas turbine assemblies who are employing commercial accessories, which are not always EMC designed, and to outline methods of achieving EMC employing readily available test instrumentation.
Standard

Methods of Achieving Electromagnetic Compatibility of Gas Turbine Engine Accessories, for Self-Propelled Vehicles

2023-02-20
CURRENT
AIR1425B
This SAE Aerospace Information Report (AIR) is a description of methods to be employed to achieve Electromagnetic Compatibility (EMC) of gas turbine engine accessories. Its primary objectives are to aid those system designers of gas turbine assemblies who are employing commercial accessories, which are not always EMC employing readily available test instrumentation. Electromagnetic Compatibility (EMC) as defined for this AIR is the ability of all engine accessories to perform within their specified capabilities when subjected to an electromagnetic environment generated by adjacent engine accessories.
Standard

Electromagnetic Compatibility (EMC) System Design Checklist

2013-02-24
HISTORICAL
AIR1221
This checklist is to be used by project personnel to assure that factors required for adequate system electromagnetic compatibility are considered and incorporated into a program. It provides a ready reference of EMC management and documentation requirements for a particular program from preproposal thru acquisition. When considered with individual equipments comprising the system and the electromagnetic operational environment in which the system will operate, the checklist will aid in the preparation of an EMC analysis. The analysis will facilitate the development of system-dependent EMC criteria and detailed system, subsystem, and equipment design requirements ensuring electromagnetic compatibility.
Standard

Filters, Conventional, Electromagnetic Interference Reduction General Specification For

2023-09-18
CURRENT
ARP1172A
This specification covers the general requirements for conventional AC and/or DC current carrying filter networks for the reduction of electromagnetic interference. A conventional filter is defined herein as a component containing definitive, lumped, R-L-C components and not employing distributed parameters as a required characteristic.
X