Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Methane Pyrolysis Technology as Part of Life Support and ISRU Systems; Design Trade-Off Supported by Bread Boarding

2007-07-09
2007-01-3253
Astrium investigates Methane Pyrolysis in the perspective of long-duration exploration missions. In particular this process, which recovers Hydrogen from Methane, allows reaching the maximum closure level of the Air Revitalization System ARES. Past studies were reviewed in the light of today's technical advancement and a technology trade-off, supported by bread boarding, is performed. Current activities do concentrate on Critical technology selection and feasibility demonstration including bread boarding and testing, Methane Pyrolysis Assembly (MPA) operational interfaces with ARES Potential applications of MPA for other exploration capabilities, like in-situ resources utilization (Moon and Mars) The paper presents the achievements so far.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

Methane Pyrolysis Technology as Part of Life Support and ISRU Systems; Development Testing

2008-06-29
2008-01-2190
Astrium investigates Methane Pyrolysis in the perspective of long-duration exploration missions. In particular this process, which recovers Hydrogen from Methane, allows reaching the maximum closure level of the Air Revitalization System ARES, see figure 1. Past studies as presented in ref. /1/ had been reviewed in light of today's technical advancement and a technology trade-off, supported by bread boarding, resulting in the pre selection of the plasma technique to perform the Methane Pyrolysis. In parallel two methods for plasma provision are investigated: Direct Current Plasma, sustained by a discharge arc rotating in a nozzle to supply energy to the flowing through carrier gas. Micro Wave (MW) Plasma, sustained by a MW within a Quartz tube embedded in a MW resonator cuboid Study activities did concentrate on Development testing of pre selected plasma Pyrolysis technology.
Technical Paper

The FAE Electrolyser Flight Experiment FAVORITE: Final Design and Pre-flight Ground Test Results

2005-07-11
2005-01-2809
FAVORITE (Fixed Alkaline Electrolyte Electrolyser Water Vapor Oxygen Reclamation In-flight Technology Demonstration Experiment) is an orbital flight experiment for a fixed alkaline electrolyte (FAE) electrolyser stack dedicated to generate oxygen and hydrogen out of water for life support and other applications. It was originally planned to fly in September 2003 on board the SpaceHab mission STS -118 with the space shuttle COLUMBIA flight ISS-13A.1, but after the tragic accident of COLUMBIA it was adapted to be launched with the unmanned Russian FOTON-M2 in May 2005. FAVORITE was therefore redesigned, manufactured and ground tested in 2004. This paper summarizes the pre-flight ground test results, reports on the lessons-learnt and gives an overview of the intended in-orbit and post-mission test program.
Journal Article

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2008-06-29
2008-01-2189
1 The Closed-Loop Air REvitalisation System ARES is a proof of technology Payload. The objective of ARES is to demonstrate with regenerative processes: the provision of the capability for carbon dioxide removal from the module atmosphere, the return supply of breathable oxygen within a closed-loop process, the conversion of the hydrogen, resulting from the oxygen generation via electrolysis, to water. The ARES Payload is foreseen to be installed - in 2012 - onboard the ISS in the Columbus Module. The operation of ARES - in a representative manned microgravity environment - will produce valuable operational data on a system which is based on technologies which are different from other air revitalization systems presently in use. The ARES Technology Demonstrator Payload development started in 2003 with a Phase B, see references [1], [2], [3] and [4]. ARES is presently in Phase C1 and a PDR is scheduled for the beginning of 2009.
X